
Testing and Relaxing Distributional Assumptions on

Random Coefficients in Demand Models∗

Max Lesellier† Hippolyte Boucher† Gökçe Gökkoca†
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Abstract

The BLP demand model for differentiated products is the workhorse model for demand

estimation with market-level data. This model uses random coefficients to account for unob-

served preference heterogeneity. The shape of the distribution of random coefficients matters

greatly for many counterfactual quantities, such as the cost pass-through. In this paper, we

develop new econometric tools to test this distribution and improve its estimation under a

flexible parametrization. First, we construct new instruments that are designed to detect

deviations from the true distribution of random coefficients. Second, we develop a formal

moment-based specification test on the distribution of random coefficients. Third, we show

that our instruments can be successfully used to estimate a flexible distribution of random

coefficients. Finally, we validate our approach with Monte Carlo simulations and an empir-

ical application using data on car purchases in Germany. We also show that these methods

extend to the mixed logit demand model with individual-level data.

Keywords: demand estimation, specification test, random coefficients

JEL codes: C35, C36, L13, C52

∗The authors would like to thank Christian Bontemps, Nour Meddahi and Mathias Reynaert for their guidance

and support as well as Steve Berry, Richard Blundell, Pierre Dubois, Jean-Marie Dufour, Eric Gautier, Cristina

Gualdani, Koen Jochmans, Philip Haile, Vishal Kamat, Pascal Lavergne, and Thierry Magnac for helpful comments

and discussions. We also thank conference and seminar participants at the TSE Econometrics and the Yale

IO workshops as well as the Milan EEA-ESEM, the Brisbane ESAM, the London IAAE and the Tokyo AMES

conferences. Finally, we want to thank Kevin Remmy for providing us with a rich data set on car purchases and

characteristics in Germany from 2012 to 2018. All remaining errors are our own.
†Toulouse School of Economics, max.lesellier@tse-fr.eu, hippolyte.boucher@tse-fr.eu, gokce.gokkoca@tse-fr.eu.

https://drive.google.com/drive/folders/1NRWC_r-xrXvcSOl6memXdZJoHdV8Nfe1?usp=sharing


1 Introduction

The differentiated product demand model initiated by Berry (1994) and Berry, Levinsohn, and

Pakes (1995) has been used in a wide array of empirical studies. It enables researchers to per-

form demand estimation in markets with differentiated products using either macro-level (market

shares) or micro-level (individual purchases) data while allowing for unobserved heterogeneity in

preferences as well as price endogeneity. This unobserved heterogeneity in preferences is mod-

eled through the use of random coefficients (RCs) in the utility function. This framework allows

researchers to estimate demand functions, price elasticities and counterfactual outcomes. Appli-

cations of the BLP model have notably studied the determinants of market power, the welfare

effects resulting from a merger or the introduction of a new good and the economic impact of a

tax or a subsidy.1

The informativeness of the empirical analysis depends on how well the model can reproduce the

underlying substitution patterns and approximate the shape of the demand curve, including its

slope and curvature. A recent result in Miravete, Seim, and Thurk (2022) shows that the commonly

used Gaussian RC on price imposes strong restrictions on the demand’s curvature and thus limits

the range of the implied pass-through. The degree of pass-through of taxes and costs is central to

answering many questions in economics such as the impact of tariffs or a cost shock on consumer

welfare. However, estimating a more flexible demand system with a non-Gaussian distribution of

random coefficients is challenging. First, there is a clear trade-off between the degree of flexibility

one chooses (for instance, going from a Gaussian to a Gaussian mixture) and the precision of

the estimates one obtains. Therefore, it is important to be able to test the specification chosen

by the researcher on the distribution of the RC (for instance, a Gaussian RC) and quantify the

degree of misspecification before potentially moving to a more flexible specification. Second, to

precisely estimate a more flexible distribution of RC, the researcher must choose instruments (or

1The BLP demand model has been used in numerous applications. A non-exhaustive list of examples includes:

Barahona, Otero, Otero, and Kim (2020), Berry et al. (1995), Crawford, Shcherbakov, and Shum (2019), Dubois,

Griffith, and O’Connell (2018), Durrmeyer (2022), Grennan (2013), Grigolon, Reynaert, and Verboven (2018),

Miller, Sheu, and Weinberg (2021), Miller and Weinberg (2017), Miravete, Moral, and Thurk (2018), Nevo (2000),

Petrin (2002), Reynaert (2021).
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equivalently moment conditions) that strongly identify this distribution. The instruments used by

the current empirical practice work well with the standard Gaussian RC, but their performance

appears to decline as the specification becomes more flexible in the simulation exercises that we

perform.

In this paper, we provide novel econometric tools to address these two challenges. In particular,

we construct a new set of instruments designed to detect deviations from the true distribution of

random coefficients. Building on these instruments, we provide a formal moment-based specifi-

cation test on the distribution of random coefficients, which can be implemented without having

to re-estimate the model under a more flexible parametrization. Our instruments are designed

to maximize the power of this test when the distribution of RC is misspecified. We also show

how these instruments can strengthen the identifying power of the moment conditions used for

estimation, and thus be successful at estimating a flexibly parameterized distribution of RCs. As

an example of a flexible parametric distribution, we consider the Gaussian mixture, which can

approximate arbitrarily well any continuous distribution on the real line.

This paper consists of three main contributions. First, we construct a new set of instruments

that are designed to detect departures from the true distribution of RCs. The intuition we use

is the following. Any given distribution of RCs generates a structural error, which, if correctly

specified, is mean-independent with respect to a set of exogenous variables. This identifying

condition can be transformed into unconditional moments, which can be used to test whether

the chosen distribution of RCs is correctly specified. We formally define this test and construct

instruments that maximize its power against a fixed alternative. In a first step, we assume that

the econometrician knows the fixed alternative and we derive an expression for the first-best

instrument. We call this instrument the most powerful instrument (MPI) and show that this

specific choice of instrument achieves the consistency of the test. In a second step, we provide two

feasible approximations of the MPI that can be derived without knowledge of the fixed alternative.

We call these feasible MPIs the interval instruments in reference to the way they approximate the

MPI.

Second, we consider the case where the researcher wants to test whether the distribution of
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RCs belongs to a given parametric family. For instance, the researcher may be interested in testing

if the random coefficient is normally distributed. This is a composite hypothesis, and we must

estimate the unknown parameters of the distribution in a first step. In a second step, we choose

instruments to test if the distribution evaluated at the estimated parameters is correctly specified.

Here, the interval instruments represent a natural choice of instruments as they are designed to

detect deviations from the true distribution of RCs. We study the asymptotic properties of our

test when the number of markets, T , goes to infinity and we prove the asymptotic validity of

the test under common assumptions. In particular, we account for the statistical uncertainty

stemming from the first step estimation, and we control for the magnitude of the approximations

that intervene in the estimation of the BLP model. Our asymptotic results complement previous

work by Freyberger (2015) on the asymptotic properties of the BLP estimator when the number

of markets grows to infinity.

Third, we show that our interval instruments can be successfully used to estimate the model,

and particularly so when the distribution of RCs is flexibly parameterized. We do so by exhibiting

the connection between the MPI and the classical optimal instruments used for efficient estimation

purposes. Specifically, we show that the MPI devoted to testing the specification of the model

at the true parameter against any local alternative can be rewritten as a linear combination of

the optimal instruments. This relation between the MPI and the optimal instruments helps us

understand why the interval instruments, which approximate the MPI, perform so well in our

simulations. So far, the literature has exclusively exploited instruments that approximate the

optimal instruments (Gandhi and Houde (2019), Reynaert and Verboven (2014)). We refer to

these instruments as traditional instruments. These have been shown to work well in the usual

Gaussian case. However, our simulations show that their performance declines when we depart

from the Gaussian RC.

To evaluate the performance of our test and instruments, we conduct two sets of simulation

experiments. First, we compare the performance of the test when using our interval instruments

and when using the instruments commonly adopted by practitioners (Gandhi and Houde (2019),

Reynaert and Verboven (2014)). We show that the test has the correct empirical size and that the
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interval instruments significantly outperform the traditional instruments in terms of power under

alternative distributions. Second, we evaluate the performance of the interval instruments in

estimating the model when the distribution of RC is flexibly parametrized, and follows a Gaussian

mixture. We show that our instruments outperform the traditional instruments in terms of the

mean squared error. In the case where the RC is a Gaussian mixture, the three sets of instruments

perform equally well.

Finally, we apply the tools developed in this paper to estimate the demand for cars in Germany

from 2012 to 2018. The objective of the empirical exercise is to see how well our instruments

perform at estimating a flexible distribution of RCs using a real dataset. Given the importance of

price to address most empirical questions, we increase the flexibility of the model by estimating

a Gaussian mixture for the RC associated with price. Second, we use our specification test

to assess how the degree of misspecification decreases when we increase the flexibility in the

distribution of RCs. Third, we use our results to study how the shape of the RC on price can

modify important counterfactual quantities such as the pass-through. In particular, our empirical

results are consistent with the findings in Miravete et al. (2022).

Related literature. Our paper contributes to several strands of the literature. First, it con-

tributes to the literature on the flexible estimation of aggregate demand models for differentiated

goods. A few recent papers have proposed non-parametric and semi-parametric methods to esti-

mate aggregate demand functions. Compiani (2018) proposes a non-parametric estimator of the

demand functions. If relaxing all the parametric assumptions makes this approach conceptually

appealing, it also faces significant theoretical and practical difficulties (more stringent data re-

quirements, large curse of dimensionality, limited scope for counterfactual analysis).2 Lu, Shi,

and Tao (2021) and Wang (2022) propose semi-parametric estimators of the distribution of RCs.

These approaches are complementary to ours and the instruments we develop in this paper can

2In particular, Compiani (2018) relaxes the Type 1 Extreme Value assumption on the taste shock. However,

it is not clear how restrictive this assumption is. McFadden and Train (2000) shows that a mixed-logit model

with flexibly distributed random coefficients can approximate any discrete choice model derived from random

utility maximization. On the other hand, the Type 1 Extreme Value assumption generates massive computational

gains, which allows for studying sophisticated markets with many products and many characteristics. Thus, the

cost-benefit analysis seems to be largely in favor of the logit specification.
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be useful to implement their non-parametric IV estimation procedures, which are known to be

rather sensitive to the quality of the instruments (Chetverikov and Wilhelm (2017)). Finally, Ho

and Pakes (2014), Tebaldi, Torgovitsky, and Yang (2019) suggest deriving bounds directly on the

counterfactual quantities.

Our paper also contributes to the literature on the non-parametric identification of the distri-

bution of RCs in demand models (Fox and Gandhi (2011), Fox, il Kim, Ryan, and Bajari (2012),

Dunker, Hoderlein, and Kaido (2022), Wang (2022), Berry and Haile (2014)). First, we slightly

extend the identification result in Wang (2022) to link it directly to the primitives of the model,

without assuming that the demand functions are identified. Second, we provide a practical way of

constructing moments that feature high identifying power with respect to the distribution of RCs.

Third, we contribute to the literature that focuses on the practical estimation of the BLP

model. First, we show that the interval instruments that we construct in this paper can be

successfully used to estimate the distribution of random coefficients, and particularly so under

of flexible distribution of RCs. This new set of instruments complements instruments commonly

used by practitioners: Reynaert and Verboven (2014) and Gandhi and Houde (2019) (see Conlon

and Gortmaker (2020) for a review). Moreover, we provide a new parametrization of the model,

which facilitates the estimation when the distribution of RCs is a Gaussian mixture. This new

parametrization complements previous papers that aim at improving the estimation of the model

(Dubé, Fox, and Su (2012), Lee and Seo (2015), Salanié and Wolak (2019)).

Finally, our paper contributes to the literature on the asymptotic properties of the BLP esti-

mator (Armstrong (2016), Berry, Linton, and Pakes (2004), Freyberger (2015), Ketz (2019)). In

particular, we prove the asymptotic normality and the consistency of the BLP estimator in the

large market framework under less stringent assumptions than the remainder of the literature.

Structure of the paper. In Section 2, we recall the baseline BLP model, define the struc-

tural error of the model, and provide conditions under which the distribution of RCs is non-

parametrically identified. In Section 3, we derive the most powerful instrument and show how it

relates to the classical optimal instruments. In Section 4, we construct two feasible approximations

of the MPI. In Section 5, we present our specification test and show its asymptotic validity. In
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Section 6, we conduct Monte Carlo simulations to evaluate the consequences of misspecification

on quantities of interest, and gauge the performance of our test and instruments. In Section 7,

we apply our new tools to estimate the demand for cars in Germany. We conclude the paper in

Section 8.

2 Model and identification

2.1 Indirect utility and moment restrictions

Indirect utility. We first describe the indirect utility function that induces the observed market

shares. Our setting closely follows the one introduced in the seminal paper Berry et al. (1995).

There are T markets indexed by t = 1, ..., T . There is a continuum of consumers indexed by

i. There are Jt market-specific products in market t. Each consumer chooses a product j ∈

{0, 1, ..., Jt} where j = 0 corresponds to the outside option. For the sake of exposition and

without loss of generality, we will assume throughout our analysis that the number of products is

constant across markets (∀t, Jt = J). Product j is characterized by a vector of characteristics xjt,

which includes the price of the good in most empirical settings. Consumer i derives an indirect

utility uijt from purchasing good j ∈ {0, 1, . . . , J} in market t:

uijt = x′
1jtβ + ξjt︸ ︷︷ ︸

δjt

+x′
2jtvi + εijt, (1)

with the following:

• x1jt is a vector of product characteristics of dimension K1 associated with product j and for

which there is no preference heterogeneity; β represents preferences for x1jt;

• ξjt is an unobserved demand shock on product j in market t;

• δjt ≡ x′
1jtβ+ξjt denotes the mean utility for product j, the part of the utility that is common

to all consumers;

• x2jt is a vector of product characteristics of dimension K2 for which there is preference

heterogeneity; vi is the associated random coefficient that follows a distribution characterized
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by density f and is independent of all the other variables: vi ⊥⊥ (xt, ξt, {εijt}j=1,...J);

• εijt is a preference shock that follows an Extreme Value type I (EV1) distribution independent

of all other variables and across i, j, t.

For individual i in market t, the indirect utility from purchasing the outside option is normalized

to ui0t = εi0t. From the random utility functions in (1), we can infer the demand functions for

each good j in market t denoted ρjt(f, β). Each consumer chooses the product that maximizes his

or her utility. Let yijt equal 1 if individual i chooses good j = 0, 1, . . . , J in market t = 1, . . . , T .

We have the following:

∀j ̸= 0, ρjt(f, β) ≡ Pf,β(yijt = 1|xt, ξt)

= Pf,β(good j is chosen in market t by individual i|xt, ξt)

= Pf,β(uijt > uikt ∀k ̸= j|xt, ξt)

=

∫
RK2

exp
{
x′
1jtβ + ξjt + x′

2jtv
}

1 +
∑J

k=1 exp {x′
1ktβ + ξkt + x′

2ktv}
f(v)dv. (2)

For the outside option, the demand function is written as follows:

ρ0t(f, β) = Pf,β(yi0t = 1|xt, ξt) =

∫
RK2

1

1 +
∑J

k=1 exp {x′
1ktβ + ξkt + x′

2ktv}
f(v)dv.

Following the EV1 assumption on the idiosyncratic shock on utility, the demand functions take

the usual logit form integrated over the distribution of preference heterogeneity. We assume in

this paper that the observed market shares are equal to the shares generated by the model above

at the true distribution f and the true preference parameter β:

∀j, ∀t, sjt = ρjt(f, β). (3)

Moment restrictions. Following the literature, we assume that the unobserved demand shock

ξjt is mean independent of zjt, a set of instrumental variables, namely, E[ξjt|zjt] = 0 a.s.. The set

zjt traditionally consists of the exogenous characteristics of all the products on the market as well

as cost shifters, which are meant to instrument for price. Indeed, the price of a good is usually

considered to be an endogenous variable since it is correlated with the unobserved demand shock
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ξjt through the profit maximization problem of firms.3 To estimate the model, the researcher

chooses functions of the instruments zjt to construct a set of unconditional moments. We refer

to these functions as estimation instruments and denote them hE(zjt). Likewise, in our analysis,

we study the functions of the instruments that are designed to test the specification of the model.

We refer to these instruments as testing instruments and we denote them hD(zjt), where D stands

for detection.

2.2 Inverse demand function and structural error

Inverse demand function. For any given distribution of random coefficients f̃ , we define the

demand function ρ ≡ (ρ1(·), ..., ρJ(·)) as the function which maps the vector of mean utilities δ to

the vector of market shares generated by the model under f̃ :

ρ(·, x2t, f̃) : RJ → [0, 1]J

δ 7→
∫
RK2

exp
{
δ + x′

2jtv
}

1 +
∑J

k=1 exp {δk + x′
2ktv}

f̃(v)dv.

Berry (1994) shows by applying Brouwer’s fixed point that for any (st, x2t) and for any distribution

of random coefficients f̃ (even when f̃ is not the true distribution), there exists a unique δ̃ ∈ RJ

such that:

st = ρ(δ̃, x2t, f̃).

We define the solution to the previous system of equations as the inverse demand functions:

ρ−1(st, x2t, f̃) = δ̃. Unfortunately, there is no closed form expression for the inverse demand

function, which must be recovered numerically.

Structural error. From what precedes, we can uniquely define the structural error ξjt(f̃ , β̃)

generated by a distribution of random coefficient f̃ and a homogeneous parameter β̃:

ξjt(f̃ , β̃) = ρ−1
j (st, x2t, f̃)− x′

1jtβ̃. (4)

3To deal with the endogeneity of prices, Berry et al. (1995) also suggests using exogenous own-product character-

istics as well as exogenous characteristics from other products. The main idea behind the use of these instruments

is to take advantage of the correlation between price and exogenous characteristics implied by profit-maximizing

firms. To be precise, Berry et al. (1995) suggests using the sum of the characteristics from other products produced

by the same firm and the sum of exogenous characteristics from rival firms’ products as instruments.
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The non-linear nature of the model is captured by the inverse demand function which enters the

expression of the structural error. The absence of an analytical formula for the inverse demand

implies that there is no closed form expression for the structural error, which complicates the

estimation of the BLP demand model. If we consider a parametric family of distributions F̃ =

{f̃(·|λ̃) : λ̃ ∈ Λ̃}, then the structural error generated by a specific element in f̃(·|λ̃) ∈ F̃ and β̃ is

defined as follows:

ξjt(f̃(·|λ̃), β̃) = ρ−1
j (st, x2t, f̃(·|λ̃))− x′

1jtβ̃.

2.3 Non-parametric identification

The main objective of this paper is to provide tools to test the specification on the distribution

of random coefficients and to improve its estimation under a flexible specification. A natural first

step is to study the conditions under which this distribution is non-parametrically identified. The

identification of random coefficients in multinomial choice models has been studied extensively

in the literature (Allen and Rehbeck (2020), Berry and Haile (2014), Dunker et al. (2022), Fox

and Gandhi (2011), Fox et al. (2012), Wang (2022)). We summarize some of these findings in

Appendix C.1. In this Section, we build on an important identification result in Wang (2022) to

recover a set of sufficient identifying conditions directly on the primitives of the model. We also

show that the identification result holds with a less stringent exogeneity assumption than in Wang

(2022).

In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions in

the standard BLP model and looks for a set of sufficient restrictions under which the identification

of the demand functions implies the identification of the distribution of random coefficients. This

approach allows him to obtain conditions that are less stringent than the rest of the literature. In

particular, Wang (2022) makes no special regressor assumption, no full support assumption, and

no continuity assumption on the covariates. Specifically, he shows that if the demand functions

ρ = (ρ1, ..., ρJ) are identified on an open set of RJ , then the distribution of random coefficients

is identified.4 His proof exploits the real analytic property of the demand functions.5 In this

4Identification of demand functions can be achieved using Theorem 1 in Berry and Haile (2014).
5In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies the iden-
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paper, we build on this injectivity result to find sufficient identifying conditions directly on the

primitives of the model (without assuming identification of the demand functions). We also show

using a random permutation of the indices that we only require the demand shock ξjt to be

mean independent of the instrumental variables zjt across products, but we do not require this

to hold for each product j taken separately. Formally, we only require E[ξjt|zjt] = 0 a.s. and not

E[ξjt|zjt] = 0 a.s. for all product j as previously. This is less restrictive, as demand shocks can

now be on average non-zero for certain products and account for unobserved quality inherent to

each product.

Let us formally state the assumptions that we impose to recover the point identification of (f, β).

Assumption A.

(i) Strict exogeneity: E[ξjt|zjt] = 0 a.s.;

(ii) Completeness: for any measurable function g such that E[|g(st, xt)|] < ∞, if E[g(st, xt)|zjt] =

0 a.s., then g(st, xt) = 0 a.s.;

(iii) The distribution of the data (st, x2t, x1t, zt) is fully observed by the econometrician and market

shares st are generated by the demand model defined in Section 2.1 by equations (1) and (3);

(iv) Detectable difference in distributions: we say f and f̃ differ (and write f ̸= f̃) if there exists

v̄ ∈ RK2 such that F (v̄) ̸= F̃ (v̄);

(v) Let xt = (x1t, x2t) then xt is such that P(x′
txt is positive definite) > 0 ∀t;

(vi) There exists x̄t ∈ X and an open set D ⊂ RJ such that δt = x̄1tβ0 + ξt varies on D a.s..

In A(i), we assume that the instruments are strictly exogenous. Assumption A(ii) is a com-

pleteness assumption that states that the instruments are strongly relevant with respect to (st, xt).

This assumption is typical of semiparametric or nonparametric IV models and is equivalent to a

full rank assumption in a linear IV model. Intuitively, it means that if the inverse demands are

different almost surely, then the instruments will be able to detect the difference. The complete-

ness assumption is a strong assumption that has been widely used in this literature (Berry and

Haile (2014), Dunker et al. (2022), Wang (2022)). Assumption A(v) is a standard rank condition.

tification of ρ on RJ From the global identification of ρ, he is then able to show that the random coefficients’

distribution is identified under a simple rank condition on x2t.
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Assumption A(vi) is meant to ensure that there is enough variation in δt to apply the injectivity

result in Wang (2022). This assumption indicates that there needs to be sufficient variation in

product characteristics across markets in the data to identify f . In practice, product character-

istics are very similar from one market to the other and may not yield sufficient variation. A

judicious solution is to create inter-market variation by interacting product characteristics with

demographic variables characterizing each market. Let us now state our formal identification

result.

Proposition 1. Under Assumption A, the distribution of random coefficients f and the homoge-

neous preference parameters β are non-parametrically identified:

(f̃ , β̃) = (f, β) ⇐⇒ E[ξjt(f̃ , β̃)|zjt] = E
[
ρ−1
j (st, x2t, f̃)− x′

1jtβ̃

∣∣∣∣zjt] = 0 a.s..

The proof is in Appendix B.1. The identification result above entails that under some fairly

weak conditions and in the presence of instruments that generate sufficient variation in the

product characteristics, the observed data identifies the distribution of random coefficients non-

parametrically. Formally, the model is at the true pair (f, β) if and only if the associated structural

error is mean independent of the instrumental variables zjt. We use this identification result to

show the consistency of our test under a specific choice of instruments that we will characterize

thereafter.

3 Detecting misspecification: the most powerful instru-

ment

The aim of this section is to recover the instrument with the greatest ability to detect misspec-

ification in the distribution of RC. To do so, we consider a setting in which the econometrician

wants to test a simple hypothesis of the form H0 : (f, β) = (f0, β0). The upper bar is used to

stress the fact that H0 is a simple hypothesis, in contrast to the composite hypothesis H0 : f ∈ F0

that we study in Section 5. Our approach builds on a simple intuition: if the model under H0 is

misspecified, then the structural error will depart from the true demand shock ξjt, and our goal is

to find the best instrument to pin down this deviation. We proceed as follows. First, we introduce
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a moment-based test for H0 and we show its asymptotic validity. Next, we derive an analytical

expression for the instrument that maximizes the power of our test against a fixed alternative

Ha : (f, β) = (fa, βa). We call this instrument the most powerful instrument (MPI) and we show

how it relates to the classical optimal instruments, derived for efficient estimation purposes. In

Section 4, we provide two feasible approximations of the MPI, which have the critical property of

being invariant with respect to the alternative Ha.

3.1 A moment-based test

We want to test H0 : (f, β) = (f0, β0) against Ha : (f, β) ̸= (f0, β0). For any set of testing

instruments hD(zjt), we have the following implication:

H0 : (f, β) = (f0, β0) =⇒ H ′
0 : E[hD(zjt)ξjt(f0, β0)] = 0.

We propose to test H0 indirectly through its implication H ′
0, which is a set of unconditional

moment conditions. We test H ′
0 with a moment-based test. Our test statistic writes as follows:

ST (hD, f0, β0) = TJ

(
1

TJ

∑
j,t

ξjt(f0, β0)hD(zjt)

)′

Ω̂−1
0

(
1

TJ

∑
j,t

ξjt(f0, β0)hD(zjt)

)
, (5)

with Ω̂0 a consistent estimator of Ω0 the asymptotic variance-covariance matrix of 1√
TJ

∑
j,t hD(zjt)ξjt(f0, β0),

that is Ω0 = E[ξ2jt(f0, β0)hD(zjt)hD(zjt)
′]. We study the asymptotic properties of our test as the

number of markets, T , goes to infinity. As the focus of this section is on the construction of

the most powerful instrument, we postpone the treatment of the specific challenges implied by

parameter uncertainty (i.e. when β0 and f0 must be estimated beforehand) and by the numerical

approximations involved in the derivation of the structural error (in practice, the researcher derives

a numerical approximation of ξjt(f0, β0)) to Section 5. Additionally, to keep the results as simple

as possible while retaining the key intuitions, we assume independence of the demand shocks in

a given market conditional on zjt. This last assumption is relaxed in the proofs in Appendix B.2

and in Section 5.
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Proposition 2. Assume that (st, xt, zt) are i.i.d. across markets and consistent with the probabil-

ity model defined by equations (1), (2) and (3) evaluated at (f, β), E[∥ξjt(f0, β0)hD(zjt)∥2] < +∞,

Ω0 has full rank, and, for k ̸= j, ξjt ⊥⊥ ξkt|zt. We have the following:

• under H0 : (f, β) = (f0, β0), ST (hD, f0, β0)
d−→

T→+∞
χ2
|hD|0 ,

• under H ′
a : E [hD(zjt)ξjt(f0, β0)] ̸= 0, ∀q ∈ R+, P(ST (hD, f0, β0) > q) −→

T→+∞
1,

with | · |0 being the counting norm.

The previous proposition indicates that as long as the testing instruments are functions of zjt,

our test procedure is asymptotically valid for H0. We are testing H0 by virtue of its implication

H ′
0 : E [hD(zjt)ξjt(f0, β0)] = 0 and, as a consequence, the power properties of our test hinge

critically on the choice of the testing instruments hD(zjt). This is the focus of the next subsection.

3.2 The most powerful instrument (MPI)

The choice of testing instruments hD(zjt) is key to maximizing the rejection rate of H0 under

any alternative Ha : (f, β) ̸= (f0, β0). To guide our choice of instruments, we first derive the

instrument that maximizes the power of our test when the econometrician tests H0 against a fixed

alternative Ha : (f, β) = (fa, βa) ̸= (f0, β0). We refer to this instrument as the most powerful

instrument (MPI). In practice, the researcher is often reluctant to fix the alternative. However,

the MPI represents a useful first-best solution for which we provide two feasible approximations

in Section 4.

Derivation of the most powerful instrument. To construct the MPI, we use the following

decomposition of the structural error generated under Ha:

ξjt(f0, β0) = ξjt(fa, βa)︸ ︷︷ ︸
true error under Ha

+ ξjt(f0, β0)− ξjt(fa, βa)︸ ︷︷ ︸
∆

ξjt
0,a

,

with ∆
ξjt
0,a being the correction term due to misspecification under the alternative Ha. Our goal

is to compare the ability of our test for different candidates hD(zjt), to reject H0 under Ha.
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The literature offers many ways to compare the power of competing tests (see Gourieroux and

Monfort (1995) for a comprehensive review). First, we distinguish between exact and approximate

methods. Exact methods rely on the exact distribution of the test statistic (under H0) and allow

for comparison in finite sample while asymptotic methods exploit the asymptotic distribution of

the test statistic and are informative in larger samples. In our case, the exact distribution of

our test is unknown. Thus, we rely on asymptotic methods, which is the most common case in

the literature. Second, we divide the methods into local and non-local methods. In parametric

tests, local strategies are based on the analysis of the power properties of competing tests under

a sequence of local alternatives θT which converges to θ0 at a given rate (usually 1√
T
). The

econometrician can compare two competing tests by means of their power functions (or more

precisely, the limits of these power functions when sample sizes go to +∞). This is called the

direct approach. The dual approach, which is known as Pitman’s relative efficiency, consists of

comparing the rates at which the minimal number of observations must increase to ensure a given

level of power. The approach we favor in this paper is the non-local approach developed in Bahadur

(1960). Here, the econometrician chooses the test with the smallest level α needed to attain a

given power against a fixed alternative and for a given number of observations. In other words,

the econometrician chooses the test that minimizes the risk of type I error ceteris paribus.

There are several reasons to favor Bahadur’s non-local approach. First, it is better suited for the

testing problem we study in this paper. The comparison criterion, known as the asymptotic slope

of the test, is in our case straightforward to derive, whereas it is not clear how one should derive

Pitman’s efficiency criterion when the test concerns non-parametric objects such as distributions.

Moreover, we study the properties of our test against a fixed alternative Ha : (f, β) = (fa, βa)

as in Bahadur’s case, which is not necessarily local. Finally, the literature has highlighted many

limitations of the local approach. Local criteria are often unable to discriminate between tests

even when these tests lead to different decisions (see Silvey (1959)). In addition, as shown in

Dufour and King (1991), a locally optimal test in a neighborhood of H0 may perform very poorly

away from H0.

Let us now present the intuition for Bahadur’s comparison approach. From Section 3.1, we
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have:

Under H0: ST ≡ ST (hD, f0, β0)
d→ S with S = χ2

|hD|0 .

Following the same notations as in Gourieroux and Monfort (1995), we denote:

Λ(s) = PH0
(S ≥ s).

The critical value is usually derived using the asymptotic distribution of the test statistic under

H0. The approximate critical region at a given level α is then given by:

CRα = {ST ≥ Λ−1(α)} = {Λ(ST ) ≤ α}.

The main idea in Bahadur’s approach entails deriving the level of the test if one takes the value

of the test statistic as the critical value (this is also known as the p-value). Namely:

αT = Λ(ST ).

Bahadur suggests preferring the test that displays the lowest level αT at least asymptotically. A

formal analysis of the asymptotic behavior of αT shows that it is better to consider the limit

of a transformation of αT than the limit of αT directly. This gives rise to the concept of the

approximate slope of the test.

Definition 1 (Asymptotic slope of the test).

(i) KT = − 2
T
log(Λ(ST )) is the approximate slope of the test,

(ii) Under Ha: plim KT = c(fa, βa) is the asymptotic slope of the test,

with plim, the limit in probability when T → +∞.

Under the alternativeHa : (f, β) = (fa, βa), consider two sequences of tests based on S1
T and S2

T

with asymptotic slopes c1(fa, βa) and c2(fa, βa) respectively. The test based on S1
T is asymptotically

preferred to the test based on S2
T in Bahadur’s sense if and only if c1(fa, βa) > c2(fa, βa). To derive

the asymptotic slopes of our test, we apply an important result in Geweke (1981), which states
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that if under H0: ST
d−→

T→+∞
χ2
q (with any q ∈ N∗), then 1

T
ST

a.s.−→ c(fa, βa) (when the limit exists).

In our test, the limiting distribution is chi-squared. Thus, the asymptotic slope of our test with

instrument hD(zjt) writes:

chD
(fa, βa) = plim

1

T
ST (hD, f0, β0) = JE [ξjt(f0, β0)hD(zjt)]

′ Ω−1
0 E [ξjt(f0, β0)hD(zjt)] .

Let us note that the asymptotic slope can also be interpreted as a measure of the speed

of divergence of the test statistic in terms of population moments, i.e. speed of divergence ≈

T × chD
(fa, βa). In the next Proposition, we derive an analytical expression for the instrument

that maximizes the slope of the test.

Proposition 3 (Most powerful instrument).

Let H be the set of measurable vectorial functions of zjt. Under any fixed alternative Ha : (f, β) =

(fa, βa), we have the following:(
E
[
ξjt(f0, β0)

2|zt
])−1 E[∆ξjt

0,a|zjt] ∈ argmax
hD∈H

chD
(fa, βa).

The proof is given in Appendix B.2. The MPI equals the conditional expectation of the correc-

tion term ∆
ξjt
0,a divided by a conditional variance term E [ξjt(f0, β0)

2|zjt]. For exposition purposes,

we drop the conditional variance term in the subsequent analysis and take the homoskedastic MPI

h∗
D(zjt) = E[∆ξjt

0,a|zjt] as the reference MPI.6 Methods have been proposed to estimate the con-

ditional variance term non-parametrically and could be adapted to our case. However, it is well

known that conditional variance, which also appears in the formulation of the optimal instruments,

is difficult to model and estimate in practice. In the BLP framework, the large dimension of zjt

makes the exercise even more difficult. Hence, researchers typically ignore this term or impose a

restrictive and ad-hoc structure on the form that it can take (for instance, Reynaert and Verboven

(2014)’s approximation of the optimal instruments in the BLP model ignores the variance term).

The homoskedastic MPI, h∗
D(zjt), features other appealing properties including (i) consistency of

the associated test and (ii) maximizing correlation with the structural error under the alternative.7

For simplicity, in what follows, we refer to the homoskedastic MPI as the MPI.

6This last expression corresponds to the exact formulation of the MPI under homoskedasticity.
7The consistency of the test also holds when we keep the conditional variance term.
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(i) Consistency. By setting hD equal to h∗
D, our moment-based test becomes consistent against

any fixed alternative Ha : (f, β) = (fa, βa) ̸= (f0, β0). Namely, we have the following result:

Proposition 4 (Consistency of the test with the MPI). Under Assumption A and the same

assumptions as in Proposition 2, we have:

Ha : (f, β) = (fa, βa) ̸= (f0, β0) =⇒ ∀q ∈ R+, P(ST (h
∗
D, f0, β0) > q) −→

T→+∞
1.

The proof of this result is given in Appendix B.2.

(ii) Correlation with the structural error. Another interesting property of the MPI is to

be the function of zjt which maximizes the correlation with the structural error.

Proposition 5 (Correlation between the MPI and the structural error).

Let H be the set of measurable functions of zjt, we have under Ha:

∀α ∈ R∗, α E[∆ξjt
0,a|zjt] ∈ argmax

h∈H
|corr(ξjt(f0, β0), h(zjt))| .

The proof is given in Appendix B.2. Intuitively, the MPI h∗
D(zjt) is designed to fully capture

the exogenous variation contained in the correction term ∆
ξjt
0,a implied by the misspecification,

which yields the result above.

3.3 Connection with the optimal instruments

The MPI maximizes the power of the moment-based test for H0 : (f, β) = (f0, β0). In contrast,

the optimal instruments minimize the asymptotic variance-covariance of the GMM estimator when

the parameter of interest is identified by conditional moment restrictions. These two problems are

seemingly unrelated. However, we show that the MPI devoted to testing the specification of the

model at the true parameter against any fixed local alternative can be rewritten as a linear com-

bination of the optimal instruments. Consequently, one can reinterpret the optimal instruments

as a local approximation of the MPI devoted to testing the model at the true parameter. This

connection between the MPI and the optimal instruments helps us understand why the feasible ap-

proximations of the MPI we construct in Section 4 improve the performance of the BLP estimator
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in our Monte Carlo simulations when the distribution of RCs is flexible. In this subsection, we first

derive the optimal instruments. Then, we exhibit the relation between the optimal instruments

and the MPI.

The estimation of the model works as follows. The researcher assumes that f belongs to a

parametric family F0 = {f0(·|λ̃) : λ̃ ∈ Λ0} and wants to estimate the true parameter θ0 = (β′
0, λ

′
0)

′

under this parametric restriction. In the estimation context that we study here, θ0 refers to

the true parameter. For now, let us assume that the model is correctly specified: f ∈ F0 and

we shorten the notations by removing the dependence of the structural error in f0(·|λ̃), which

becomes implicit in this context. Namely, ξjt(f0(·|λ̃), β̃) becomes ξjt(θ̃). We further assume that

θ0 is point identified by the following moment restriction: E[ξjt(θ0)|zjt] = 0 a.s..8 The researcher

must choose the set of instruments hE(zjt) (or equivalently, the unconditional moments) to include

in the GMM objective function:

θ̂ = Argmin
θ̃

TJ

(
1

TJ

∑
j,t

ξ̂jt(θ̃)hE(zjt)

)′

Ŵ

(
1

TJ

∑
j,t

ξ̂jt(θ̃)hE(zjt)

)
.

Optimal instruments in the BLP demand model. Traditionally, the instruments hE(zjt)

are chosen to minimize the asymptotic variance-covariance of the estimator θ̂. The instruments

that reach this objective are called the optimal instruments. The resulting estimator is said to be

efficient in the sense that its asymptotic variance cannot be reduced by using additional moment

conditions. There is a large body of literature on the derivation of optimal instruments in econo-

metric models (Amemiya (1974), Chamberlain (1987), Newey (1990, 2004)). The BLP estimator

θ̂ is a non-linear GMM estimator and classical results in Chamberlain (1987) and Amemiya (1974)

show that the optimal instruments in this case write:

h∗
E(zjt) = E[ξjt(θ0)2|zjt]−1E

[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt] ,
8The identification conditions in the parametric case are less stringent than the conditions for the non-parametric

identification in Assumption A.
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The corresponding efficiency bound (obtained by setting hE = h∗
E) writes:

V ∗ = E
[
E
[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt]E [∂ξjt(θ0)∂θ̃

∣∣∣∣zjt]′ E[ξjt(θ0)2|zjt]−1

]−1

.

For the sake of exhaustivity, we show this result in Appendix B.2.1. As for the MPI, the

formulation of the optimal instruments above is obtained under the assumption of conditional

independence of demand shocks ξjt in the same market: k ̸= j, ξjt ⊥⊥ ξkt|zt. In Appendix B.2.1,

we derive the expression for the optimal instruments under weaker assumptions on the demand

shock.9 Consistent with what we did in the case of the MPI, we drop the conditional variance

term E[ξjt(θ0)2|zjt].

Connection between the MPI and the optimal instruments. Let θ0 the true parameter.

Under the parametric assumption f ∈ F0, the simple hypothesis H0 : (f, β) = (f0, β0) we studied

previously becomes H0 : θ = θ0. It is straightforward to show that, in the parametric case, the

associated MPI against a fixed alternative Ha : θ = θa writes: h∗
D(zjt) = E

[
∆

ξjt
θ0,θa

|zjt
]
with

∆
ξjt
θ0,θa

= ξjt(θ0) − ξjt(θa). By taking a Taylor expansion of ξjt(θa) around θ0, we obtain the

following:

∆
ξjt
θ0,θa

=
∂ξjt(θ0)

∂θ̃
(θ0 − θa) + o(||θ0 − θa||2) .

We see that when θa is in a neighborhood of θ0, the MPI, h∗
D(zjt), against this fixed alternative

is a linear combination of the optimal instruments h∗
E(zjt):

h∗
D(zjt) = E

[
∆

ξjt
θ0,θa

|zjt
]
≈ E

[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt]′︸ ︷︷ ︸
h∗
E(zjt)

(θ0 − θa).

It follows that classical optimal instruments can be interpreted as an approximation of the MPI

devoted to testing H0 : θ = θ0 against any fixed local alternative.10 Moreover, let us note that

the connection between the MPI and the optimal instruments holds if we keep the conditional

variance term in both cases.

9We allow for unrestricted forms of correlation between demand shocks within a given market.
10This interpretation of the optimal instruments only holds when the model is well specified i.e. f ∈ F0, and

thus, in general, the optimal instruments shouldn’t be used to test the specification of the model.
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4 A feasible most powerful instrument

The MPI is the most powerful instrument to reject H0 : (f, β) = (f0, β0) against a fixed alternative

Ha : (f, β) = (fa, βa). Its derivation requires the knowledge of the alternative while in practice

the econometrician typically wants to remain agnostic about the alternative. Moreover, the MPI

is defined as a conditional expectation of a non-linear function with respect to a large dimension

vector zjt, and thus, even if the alternative Ha is known, the MPI can be difficult to compute.

In this section, we remain in the same configuration, where the econometrician wants to test

H0 : (f, β) = (f0, β0) against a fixed alternative Ha : (f, β) = (fa, βa). However now, we assume

that this alternative is unknown to the econometrician. We provide two feasible approximations

of the MPI, which do not depend on Ha, and that, unlike the MPI, can be computed in practice.

To do so, we show that the MPI can be approximated by a linear combination of known functions

of zjt. We call these interval instruments in reference to the way these functions are derived. Our

feasible MPI is simply the vector of the interval instruments. The cost to incur for feasibility is

that the properties we established for the MPI do not carry over to the feasible MPI. Nevertheless,

our Monte Carlo simulations in Section 6 show that the interval instruments perform very well in

practice.

By construction, in the BLP demand model, the correction term writes:

∆
ξjt
0,a = x′

1jt(βa − β0) + ρ−1
j (st, x2t, f0)− ρ−1

j (st, x2t, fa)

= x′
1jt(βa − β0) + ∆j(st, x2t, f0, fa).

(6)

The previous equation shows that the correction term is the sum of a linear part, which is standard,

and a non-linear part which is specific to the BLP demand model.

Linear part. The linear part of the MPI writes: E[x1jt|zjt]′(βa − β0) = E[x1jt|zjt]′γ. Thus, for

its linear part, the MPI is a linear combination of the conditional expectation of x1jt with respect

to the exogenous variables with unknown weights. If one is interested in specifically testing that

β = β0, informative instruments simply consist of the variables in E[x1jt|zjt].
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Non-linear part. The non-linear part, ∆j(st, x2t, f0, fa), is the part which is implied by the

misspecification on the distribution of RCs and for which we need to recover a feasible approx-

imation. Equation (6) indicates that the non-linear part is the difference between the inverse

demand functions generated by f0 and fa. We now go one step further and derive two analytical

approximations of ∆j(st, x2t, f0, fa) which we then use as building blocks to construct our feasible

approximations of the MPIs. The first approximation is based on a local expansion around f0. The

second approximation is based on an identity that is valid everywhere. The first approximation is

more precise locally whereas the second one is more robust to large deviations from f0.

4.1 Local approximation

First, we consider a local approximation of ∆j(st, x2t, f0, fa). This approximation corresponds

to the first order term in the expansion of ∆(st, x2t, f0, fa) “around f0”, which is recovered by

exploiting the properties of the inverse demand function, which is both C∞ and bijective in st.

Proposition 6.

A first order expansion of ∆(st, x2t, f0, fa) around f0 writes:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0t , x2t, f0)

∂δ

)−1 ∫
RK2

[
exp{δ0t + x2tv}

1 +
∑J

k=1 exp
{
δ0kt + x′2ktv

} − ρ(δ0t , x2t, f0)

]
fa(v) +R0,

with δ0t = ρ−1(st, x2t, f0) and R0 = o
(∫

RK2
|fa(v)− f0(v)|dv

)
.

The proof is in Appendix B.3.1. We first observe that for any density f0, we can construct

artificial market shares s0t such that ρ−1(st, x2t, fa) = ρ−1(s0t , x2t, f0). Then, we recover the final

result by taking a Taylor expansion of ρ−1(s0t , x2t, f0) around st and showing that the remainder

is bounded.11 This approximation is local by design: it works best when fa is a local deviation

from f0, even if it can be used more generally. To make this expression useful in practice, we

must still overcome two difficulties. The distribution fa is unknown to the econometrician. In

addition, some variables such as δ0jt are endogenous. However, notice that the previous expression

may be particularly useful if the econometrician is interested in testing H0 against a fixed and

known alternative as we did in the previous section.

11The expansion is taken around st because s0t depends on fa and is thus unknown to the researcher.
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Discretizing the integral. To solve for the fact fa is unknown to the econometrician, we replace

the integral in which fa appears by a finite Riemann approximation. Namely,∫
R

exp
{
x′
2jtv
}

1 +
∑J

k=1 exp {δ0kt + x′
2ktv}

fa(v)dv ≈
L∑
l=1

ωl(fa)
exp{x′

2jtvl}
1 +

∑J
k=1 exp{δ0kt + x′

2ktvl}
,

with {vl}l=1,...,L the points chosen in the domain of definition of fa, and {ωl(fa)}l=1,...,L the asso-

ciated weights.12 We provide more details on how to choose the points in Appendix C.4. It is

important to observe that in the Riemann approximation, only the weights depend on the alter-

native fa. This approximation can also be interpreted as approaching a continuous distribution

with a discrete one, where each point in {vl}l=1,...,L represents a specific consumer type with an

associated probability wl(fa). The non-linear part of the MPI can thus be approximated as follows:

E[∆j(st, x2t, f0, fa)|zjt] ≈
L∑
l=1

ωl(fa) E[πj,l(st, xt)|zjt],

with πj,l(st, xt) =

(
∂ρ(δ0t , x2t, f0)

∂δ

)−1
[

exp{δ0t + x2tvl}
1 +

∑J
k=1 exp {δ0kt + x′

2ktvl}
− ρ(δ0t , x2t, f0)

]
j

.

Approximating the conditional expectation. Ideally, we would like to estimate the condi-

tional expectation of πj,l(st, xt) with respect to zjt. The endogenous variables are {δ0jt}j=1,....,J ,

and the potential endogenous variables in {x2jt}j=1,...,J , which often include prices. In practice,

computing the conditional expectation is challenging because the dimension of zjt can be very

large and the functions πj,l(·) are highly non-linear and non-separable in the endogenous variables.

This makes it unappealing to use standard non-parametric estimation methods.13 In the same

spirit as Reynaert and Verboven (2014), we first project the endogenous variables on the space

spanned by a relevant subset of zjt. We mark the projected endogenous variables with a hat and

12In the usual Riemann sum, the weights correspond to density evaluated at point vl : fa(vl) times the width of

the interval around vl.
13For instance, a Sieve nonparametric estimator of the conditional mean. The dimension of zjt makes this

approach of little relevance in practice.
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we plug them into our functions πj,l(·). Namely, we have the following approximation for every

interval instrument l:

E[πj,l(st, xt)|zjt] ≈ π̂j,l(zjt) =

(
∂ρ(δ̂0t , x̂2t, f0)

∂δ

)−1
 exp{δ̂0t + x̂2tvl}

1 +
∑J

k=1 exp
{
δ̂0kt + x̂′

2ktvl

} − ρ(δ̂0t , x̂2t, f0)


j

.

We show in Appendix C.2 that this strategy yields an estimator of the conditional expectation

that converges faster to a first order approximation of the conditional expectation.

Test procedure. From what precedes, the MPI (for its non-linear part) can be approximated

as follows: h∗
D(zjt) ≈

∑L
l=1 ωl(fa) π̂j,l(zjt). As we don’t know the weights ωl(fa), we propose to

take the vector π̂j(zjt) = (π̂j,1(zjt), ..., π̂j,L(zjt))
′ as our testing instruments. We call them interval

instruments in reference to the way we divide the support into several intervals to construct this

approximation. Following the test procedure presented in Section 3.1, we perform a moment based

test for H0 : E [π̂j(zjt)ξjt(f0, β0)] = 0. Under the same assumptions as in Proposition 2 and setting

hD(zjt) = π̂j(zjt), we have the following:

Under H0 : ST (hD, f0, β0)
d−→

T→+∞
χ2
L.

This approach has the advantage of being feasible since we can construct the vector of interval

instruments π̂j(zjt), while remaining completely agnostic about fa. The price to pay is that

we lose the optimality properties of the MPI. We further discuss the properties of the feasible

MPI in Appendix C.7. Moreover, the infeasible MPI, h∗
D(zjt), is of dimension one and its test

statistic is distributed as χ2
L asymptotically. In contrast, the feasible MPI is of dimension L and

its asymptotic distribution is a χ2
L. This increase in the number of degrees of freedom may lead

to some loss of power. An alternative approach would consist in letting the researcher choose the

weights {ω̂l}l=1,...,L and recover an instrument of dimension one. However, for this approach to

work well and retain good power properties, the econometrician must choose the weights so that

they approximately match the real weights {wl(fa)}l=1,...,L. This requires a good prior knowledge

of the cumulative distribution function of the alternative distribution fa. Nevertheless, our Monte

Carlo simulations in Section 6 show that the feasible MPIs that we propose perform very well in

practice.
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4.2 Global approximation

Second, we consider a global approximation that is based on an identity which is valid everywhere

and not only when f is close to fa. Simple algebraic operations (see Appendix B.3.2) allow

us to derive the following expression for ∆j(st, x2t, f0, fa). Let δ0jt = ρ−1
j (st, x2t, f0) and δajt =

ρ−1
j (st, x2t, fa). We have:

∆j(st, x2t, f0, fa) = log


∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δakt+x′
2ktv}

fa(v)dv∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ0jt+x′
2ktv}

f0(v)dv

 .

As for the local approximation, we cannot directly exploit this formula as some quantities such

as fa and δajt are unknown and some variables such as δ0jt are endogenous. To remedy these two

difficulties, we apply the same methods as previously described: we discretize the integral, and we

project the endogenous variables onto the space spanned by a relevant subset of zjt. To solve for

the fact that the mean utility δajt under the alternative is unknown, we replace it with the mean

utility under the null δ0jt. This should not alter the approximation too much given that δajt only

enters the expression at the denominator within a sum, which averages out the differences between

δajt and δ0jt across products. In the end, we are able to provide the following approximation for the

non-linear part of the MPI:

E[∆j(st, x2t, f0, fa)|zjt] ≈ log

(
L∑
l=1

ω̄l(fa) ˆ̄πj,l(zjt)

)
with ˆ̄πj,l(zjt) =

exp{x′
2jtvl}

1+
∑J

k=1 exp{δ̂0kt+x′
2ktvl}∫

RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ̂0jt+x′
2ktv}

f0(v)dv
,

where {ω̄l(fa)}l=1,...,L correspond to the unknown weights and the ˆ̄πj,l(zjt) are set of global

interval instruments. The MPI can thus be approximated by the logarithm of a weighted sum of

known functions of zjt. As we did previously, we use ˆ̄πj(zjt) = (ˆ̄πj,1(zjt), ..., ˆ̄πj,L(zjt))
′ as instru-

ments to test H0. All the weights are positive and sum to one, which entails that the non-linear

part of the correction term is an increasing function of our instruments. This approximation is

said to be global because contrary to the second approximation we study, it does not require f0

to be close to fa. Nevertheless, if fa is close to f0, then the fraction κ inside the logarithm is close

to 1 and the well-known approximation log(κ) ≈ κ− 1 allows us to directly rewrite the MPI as a

linear combination of our instruments.
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Overall, the feasible MPIs that we derive in this section allows us to approximate the most

powerful instrument against a fixed alternative while remaining agnostic about this alternative.

4.3 Feasible MPIs for estimation

In the estimation framework, the researcher stipulates that f belongs to a parametric family

F0 = {f0(·|λ̃) : λ̃ ∈ Λ0} and wants to estimate the true parameter θ0 = (β′
0, λ

′
0)

′ under this

parametric restriction. From the connection between the MPI and the local instruments that we

present in Section 3.3, we can infer that good estimation instruments hE(zjt) ought to approximate

the MPI devoted to testing H0 : θ = θ0 against any local alternative. If we have an initial estimator

of θ0, we can directly use the interval instruments presented previously to approximate the MPI

devoted to testing H0 : θ = θ0 against an unknown alternative. The fact that the feasible MPIs

do not depend on the alternative is key for estimation. Moreover, the transformation of the MPI

into a vector of instruments of dimension L ≥ |λ0| is necessary for estimation as the number of

instruments must be greater than the dimension of the parameter to estimate.14 In Appendix C.5,

we propose a version of the interval instruments that does not require a first step estimate of θ0

and that can be computed directly from the logit specification.

5 Composite hypothesis

In the traditional estimation procedure, which encompasses almost all the applications of the

BLP model, the econometrician must make a parametric assumption on the distribution of random

coefficients to estimate the model. Formally, the econometrician assumes f belongs to a parametric

family F0 = {f0(·|λ̃) : λ̃ ∈ Λ0}, where λ̃ is a parameter that must be estimated. In applied work,

researchers typically assume that f is normally distributed. This parametric choice is rarely

grounded in economic theory and, if too restrictive, is likely to impose arbitrary restrictions

on some key counterfactual quantities such as the pass-through. In this section, we develop a

formal specification test for H0 : f ∈ F0. In comparison to the test in Section 3.1, we must now

estimate the parameters of the distribution θ0 = (β′
0, λ

′
0)

′ in a first step, which generates parameter

14The linear parameter β0 has its own instruments, which are simply the variables in x1jt.
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uncertainty. Moreover, we propose a rigorous treatment of the numerical approximations involved

in the derivation of the structural error ξjt(θ̃). We organize this section as follows. First, we define

the pseudo-true value associated with a given specification and the first stage estimator. Second,

we define our test procedure and its implementation in practice. Finally, we study the asymptotic

properties of our test.

5.1 Pseudo-true value and first stage estimator

To estimate the BLP model, researchers must make three choices. They must choose the paramet-

ric family F0, the instruments hE(zjt) to estimate the model, and a weighting matrix W , which

weights the different moments included in the objective function. Given these three choices, we

can define the BLP pseudo-true value θ(F0, hE,W ) ≡ θ0 = (β′
0, λ

′
0)

′ as follows:15

θ(F0, hE,W ) ∈ Argmin
θ̃

E
[
ξjt(f0(·|λ̃), β̃)hE(zjt)

]′
WE

[
hE(zjt)ξjt(f0(·|λ̃), β̃)

]
.

If the model is well-specified (f ∈ F0) and the pseudo-true value is unique, then the pseudo-true

value is the true value: θ0 = θ. Under misspecification, θ0 is a parameter whose value depends

on (F0, hE,W ). For exposition purposes, we omit this dependence in the subsequent analysis.

Moreover, here we remain general and do not impose that W must be equal to the usual optimal

weighting matrix. It is often the case in practice, that the researchers choose the identity matrix

or regularize the weighting matrix.

First stage estimator θ̂. The first stage estimator is an empirical counterpart of the BLP

pseudo-true value defined previously. The minimization is done with respect to sample analogs.

Additionally, we know that there is no closed form expressions for the structural error ξjt(f0(.|λ̃), β̃),

and thus, we must use a feasible counterpart ξ̂jt(f0(.|λ̃), β̃) instead.

θ̂(F0, hE, Ŵ ) ≡ θ̂ = Argmin
θ̃

(∑
j,t

ξ̂jt(f0(.|λ̃), β̃)hE(zjt)

)′

Ŵ

(∑
j,t

ξ̂jt(f0(.|λ̃), β̃)hE(zjt)

)
. (7)

15Our definition of a pseudo-true value is closely related to the approach in White (1982) in the context of

maximum likelihood. In his case, the pseudo true value minimizes the Kullback-Leibler distance between the

assumed likelihood and the true likelihood, whereas in our case, the pseudo-true value minimizes a weighted sum

of population moments.
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The construction of the feasible structural error ξ̂jt(f0(.|λ̃), β̃) requires the following 3 numerical

approximations:

1. The econometrician does not observe a continuum of consumers as in the theoretical model

but only empirical averages ŝjt over the nt individuals in market t.

ŝjt =
1

nt

nt∑
i=1

yijt, (8)

where yijt ∈ {0; 1} are i.i.d. choices over the i = 1, . . . , nt.

2. There is no closed form for ρj(., x2t, f0(·|λ̃)), the integral has to be computed through nu-

merical integration. A prominent example is Monte Carlo integration:

ρ̂j(δ, x2t, f0(|λ̃)) =
1

R

R∑
r=1

exp{δj + x′
2jtvr}

1 +
∑Jt

k=1 exp{δk + x′
2ktvr}

, (9)

with vr iid draws from f0(·|λ̃).

3. There is no analytical way to recover the inverse of the demand functions ρ−1(st, x2t, f0(·|λ̃)).

The most popular way to derive the inverse demand is by solving the following contraction:

C : (·, st, x2t, f0(·|λ̃)) : δ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃))).

This solution has given rise to the popular nested fixed point GMM procedure.16

In Section 5.3, we explicitly state the assumptions that allow us to neglect these approximations

asymptotically.

5.2 Test procedure

Under Assumption A, and assuming hE(zjt) and W are such that the pseudo-true value θ0 is

unique, the following equivalence holds:

H0 : f ∈ F0 ⇐⇒ H0 : (f, β) = (f0(·|λ0), β0)

⇐⇒ E[ξjt(f0(·|λ0), β0)|zjt] = 0 a.s..

16Another solution that has gained traction in the literature is the MPEC procedure (Dubé et al. (2012)) that

replaces the BLP inversion at each step of the minimization by imposing equilibrium constraints on the minimization

program.
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The pseudo true value reduces the dimensionality of the problem by allowing us to move from

a composite hypothesis H0 : f ∈ F0 to the simple hypothesis H0 : (f, β) = (f0(·|λ0), β0) studied

previously. As we did in Section 2, we propose a moment-based test of H0.
17 Under H0, for every

set of testing instruments hD(zjt), the following moment conditions must hold:

H0 : f ∈ F0 ⇐⇒ H0 : (f, β) = (f0(·|λ0), β0) =⇒ H ′
0 : E [ξjt(f0(·|λ0), β0)hD(zjt)] = 0.

We now develop a procedure to test H ′
0. In comparison to the test in Section 3.1, we must

now account for the fact that the pseudo-true value needs to be estimated to derive the test

statistic, which generates parameter uncertainty. Moreover, we propose a rigorous treatment of

the numerical approximations involved in the derivation of the structural error.

Test statistic. For any choice of testing instruments hD(zjt), our objective is to test H ′
0 :

E[ξjt(f0(·|λ0), β0)hD(zjt)] = 0 where θ0 = (β′
0, λ

′
0)

′ is the pseudo-true value associated with the

parametric family F0.
18 In order to test H0, we consider the following Wald test statistic:

ST (hD,F0, θ̂) = TJ

(
1

TJ

∑
j,t

ξ̂jt(f0(·|λ̂), β̂)hD(zjt)

)′

Σ̂

(
1

TJ

∑
j,t

ξ̂jt(f0(·|λ̂), β̂)hD(zjt)

)
.

where Σ̂ is a weighting matrix chosen by the econometrician and θ̂ = (β̂, λ̂) is a consistent estimator

of θ0. The number of markets T is the dimension that we let grow to infinity to the asymptotic

properties of our test. We motivate this choice in Appendix C.3. Under some regularity conditions

17Other testing approaches could have been considered. First, one could use the previous equivalence to directly

test H0 via an integrated conditional moment test. We do not follow this route for at least two reasons. First,

this test will contain no information on the nature of the misspecification (it could be completely unrelated to the

distribution of RC). Second, in practice the dimension of zjt is often very large, which substantially reduces the

power of this kind of test. Another testing approach would have entailed testing H0 : f ∈ F0 against a larger class

of densities that encompasses F0. For instance, if F0 is the family of normal distributions, encompassing families

are mixtures of Gaussians with a larger number of components. We do not follow this route for two reasons. First,

it is not desirable to restrict the alternative to a class of distributions that encompass the null as the econometrician

does not know a priori the misspecification. Second, estimating the BLP model with a more flexible parametrization

is challenging. An advantage of our test procedure is that it doesn’t require estimating the model with a more

flexible parametrization.
18Remember that under an alternative specification, the pseudo true value also depends on the estimation

instruments hE(zjt) and the weighting matrix.
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that we make explicit in the following section, the asymptotic distribution of the test statistic under

H ′
0 is as follows:

ST (hD,F0, θ̂)
d→ Z ′ΣZ, (10)

with
1√
T

T∑
t=1

J∑
j=1

ξ̂jt(f0(·|λ̂), β̂)hD(zjt)
d→ Z ∼ N (0, Ω̃0). (11)

Σ is the probability limit of Σ̂. We make Ω̃0 explicit in the next subsection (in particular, the

derivation of Ω̃0 takes into account parameter uncertainty ). Given that Σ̂ is chosen by the

econometrician and it is possible to derive a consistent estimator of Ω̃0, the econometrician can

always simulate the asymptotic distribution of the test statistic. In some polar cases, which we

present hereafter, the asymptotic distribution of our test statistic is pivotal chi-square distribution

that does not require to be simulated.

Two polar cases. For the sake of exposition, let us now describe two polar cases where the

asymptotic distributions are pivotal chi-square distributions, which do not require to be simulated.

Denote by | · |0 the counting norm.

1. Sargan-Hansen J test: If the set of estimation instruments and the set of testing instru-

ments are the same (hE = hD), if Ŵ is the 2-step GMM optimal weighting matrix and if

Σ̂ = Ŵ−1, then our test boils down to the usual Sargan-Hansen J test and we have under

H ′
0:

ST (hD,F0, θ̂)
d→ χ2

|hE |0−|θ|0 .

2. Non-redundant hD and hE: if Ω̃0 has full rank and if the econometrician sets Σ̂ = ˆ̃Ω−1
0 ,

then our test statistic has the following asymptotic distribution under H ′
0:

19

ST (hD,F0, θ̂)
d→ χ2

|hD|0 .

19If Ω0 is singular, one can always use directly the asymptotic distribution in 10 or apply the singularity-robust

procedure proposed in Andrews and Guggenberger (2019).
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Choice of the testing instruments. As previously indicated, the power properties of our

test hinge critically on the choice of testing instruments hD(zjt). We established that the MPI

and its feasible counterparts, the interval instruments, feature attractive properties in testing

H0 : (f, β) = (f0(·|λ0), β0) against any fixed alternative. Thus, it is natural to use these instruments

for the specification test above. In particular, we show that the consistency of the test with the

MPI carries over to the general specification test above in Appendix B.5.

5.3 Asymptotic validity

We now study the asymptotic properties of our test when the number of markets T goes to infinity.

To establish the asymptotic validity and consistency of our test, we exploit classical results on

the asymptotic normality of the non-linear GMM estimator (Hansen (1982), Newey (1990)) as

well on the large-T asymptotics of the BLP estimator (Freyberger (2015)). The main challenge

here is to control the magnitude of the approximations that intervene in the derivation of the

structural error so that they can be neglected asymptotically. Contrary to Freyberger (2015), we

do not assume the convergence of any moments ex-ante and we allow for the approximation error

between demand and observed market shares to be non-zero.

Assumption B.

(i) (st, xt, zt)
T
t=1 are i.i.d. across markets and are consistent with the probability model defined

by equations (1), (2) and (3) evaluated at (f, β);

(ii) Strong Exogeneity: E[ξjt(f, β)|zjt] = 0 a.s.;

(iii) Finite moment conditions: x2t has bounded support and x1t has finite 4th moments.

In B(i), we assume that the data are i.i.d. across markets, an assumption which we could

relax slightly (technically, only certain moments need to be identical across markets), and that

the data are generated by the BLP demand model at a given pair (f, β). In B(ii), we assume

exogeneity of our instrumental variables. Let us stress that to show the asymptotic validity of

our specification test, we do not require (f, β) to be non-parametrically identified, as we just need

parametric identification under H0. In particular, we do not need all the assumptions in A. B(iii) is
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a necessary condition to recover the asymptotic normality of the BLP estimator. x1t having finite

4th moments is standard. x2t having bounded support has two purposes. First, it implies that the

structural error has a finite 4th moment, Compiani (2018) makes the same assumption on price

for this purpose. Second, it ensures that the mapping used in the nested fixed point algorithm is a

proper smooth contraction, which allows us to prove that the NFP algorithm converges (without

truncating the contraction mapping as in Berry (1994) and Berry et al. (1995)) and control for

the NFP approximation bias.

Assumption C.

F0 is such that :

(i) λ0 belongs to the interior of Λ0 with Λ0 compact;

(ii) λ̃ 7→ ρ(δ, x2t, f0(·|λ̃)) is well defined and continuously differentiable on Λ0.

In C(i), we assume that, for any given DGP, the associated pseudo-true-value λ0 associated with

the family F0 lies in a compact space Λ0. This condition is standard in establishing the consistency

and asymptotic normality of M-estimators. Second in C(ii), we impose that the demand function

and its derivative with respect to λ should both be well defined and continuous.

Next, we impose conditions on the instruments that are used for estimation hE(zjt) and for

testing hD(zjt) and on the BLP estimator itself.

Assumption D.

For a given F0 that satisfies Assumption C and for some weighting matrix W and Σ, the following

conditions must hold:

(i) Finite moments for instruments: hE(zjt) and hD(zjt) are not perfectly colinear and have finite

4th moments;

(ii) Global identification of θ0: ∃!θ0 such that ∀θ̃ ̸= θ0:

E

∑
j

ξjt(f0(·|λ̃), β̃)hE(zjt)
′

WE

∑
j

hE(zjt)ξjt(f0(·|λ̃), β̃)

 > E

∑
j

ξjt(f0(·|λ0), β0)hE(zjt)
′

WE

∑
j

hE(zjt)ξjt(f0(·|λ0), β0)

 ;
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(iii) Local identification: Γ(F0, θ0, hE) = E
[∑

j hE(zjt)
∂ξjt(f0(·|λ0),β0)

∂θ′

]
and Γ(F0, θ0, hD) have full

column rank;

(iv) W and Σ are symmetric positive definite and Ŵ
P→ W , Σ̂

P→ Σ;

(v) θ̂ minimizes objective function (7) and satisfies the FOC of the minimization problem:(∑
j,t

∂ξ̂jt(f(·|λ̂), β̂)
∂θ

hE(zjt)

)′

Ŵ

(∑
j,t

ξ̂jt(f(·|λ̂), β̂)hE(zjt)

)
= 0.

Assumption D restricts the class of instruments which can be used for estimation and for

testing. More specifically, D(i) and D(iii) are common regularity conditions necessary to establish

asymptotic results whereas D(ii) is an identification condition which ensures that the pseudo true

value θ0 is uniquely defined, which is critical to show the consistency of the BLP estimator. Finally,

Assumptions D(iv) and D(v) impose regularity conditions on the weighting matrix as well as on

the BLP estimator itself.

The next assumptions ensure that the numerical approximations involved in the derivation of

the structural error do not interfere with the asymptotic theory.

Assumption E.

(i) Let nt be the number of individuals in market t, (nt)
T
t=1 is i.i.d. and independent from all other

variables. First it must be that ∀t
√
TE(n−1/2

t ) →
T→+∞

0. Second observed market share ŝt in

market t must write:

ŝjt =
1

nt

nt∑
i=1

yijt,

with (yijt)
nt
i=1 i.i.d. draws generated by the BLP demand model at a given pair (f, β) conditional

on (xt, ξt).

(ii) Let R be the number of simulations, then the simulated demand for product j writes:

ρ̂jt(δ, x2t, f0(·|λ̃)) =
1

R

∑
r

exp{δj + x′
2jtvr}

1 +
∑

k exp{δk + x′
2ktvr}

,

where vr
iid∼ f0(·|λ̃), and T

R
→

T→+∞
0.

(iii) Let H be the stopping time for the contraction (which depends on T ) and ϵ the fixed Lipschitz
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constant of the contraction mapping used to invert the demand function, then it must be that
√
TϵH →

T→+∞
0.

A sufficient condition for E(i) to hold is that the minimum number of individuals observed in

any market is of higher order than the total number of markets. This condition can be checked

in practice.20 Assumptions E(ii) and E(iii) can also be checked in practice and are more manage-

able because R and H are chosen by the researcher and can always be increased so that these

assumptions hold.

Given our assumptions, we derive the asymptotic distribution of our test statistic under the

null, and show that the test is consistent.

Theorem 5.1. Let θ̂ = θ̂(F0, Ŵ , hE) be the BLP estimator associated with distributional as-

sumption F0, weighting matrix Ŵ , estimating instruments hE. Under assumptions B-E,

• Under H ′
0 : E [ξjt(f0(·|λ0), β0)hD(zjt)] = 0,

ST (hD,F0, θ̂)
d→

T→+∞
Z ′ΣZ, Z ∼ N (0, Ω̃0),

where Ω̃0 =

(
I|hD|0 G

) Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)


I|hD|0

G′

 ,

Ω(F0, hD, hE) = cov

(∑
j

ξjt(f(.|λ0), β0)hD(zjt),
∑
j

ξjt(f(.|λ0), β0)hE(zjt)

)
,

G = −Γ(F0, θ0, hD) [Γ(F0, θ0, hE)
′WΓ(F0, θ0, hE)]

−1
Γ(F0, θ0, hE)

′W.

• Under H ′
a : E [hD(zjt)ξjt(f0(.|λ0), β0)] ̸= 0,

∀q ∈ R+, P(ST (hD,F0, θ̂) > q) →
T→+∞

1.

20Note that by making stronger assumptions on the higher moments and the support of the observed character-

istics, it is possible to find milder conditions on the number of individuals relative to the number of markets.
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The proof of Theorem 5.1 is in Appendix B.4 and comprises three main steps. First, we show

that under the assumptions in E, the numerical approximation becomes asymptotically negligible.

Second, we show the consistency and asymptotic normality of the BLP estimator. Finally, we

derive the asymptotic distribution of the test statistic, taking into account parameter uncertainty

(θ0 is estimated and not observed). The apparent complexity of the asymptotic variance-covariance

matrix Ω0 is a direct consequence of parameter uncertainty.

6 Monte Carlo experiments

In this section, we conduct three distinct sets of Monte Carlo experiments. First, we implement a

simple simulation exercise to assess the effects of incorrectly specifying the distribution of random

coefficients on quantities of interest such as price elasticities or cross-price elasticities, which are

known to play a key role in shaping the counterfactuals. In a second set of Monte Carlo exper-

iments, we study the finite sample performances of the specification test developed in Section 5

with different sets of testing instruments. We first examine the size of our test in finite sample.

Then, we investigate the power properties of our test under alternative specifications (with al-

ternatives including Gaussian mixtures, gamma distributions and local alternatives). We show

that our test with the interval instruments significantly outperforms the traditional J-test with

the usual instruments. Finally, in the last Monte Carlo exercise, we study the performance of the

interval instruments to estimate the parameters of the model by means of comparison with the

commonly used instruments in the literature.

6.1 Simulation design

For the sake of exposition, we will keep the same simulation design for all the simulation exper-

iments. The simulation design closely follows the simulation design used in Dubé et al. (2012),

Reynaert and Verboven (2014). The market includes J = 12 products, which are characterized by

3 exogenous product attributes xa, xb and xc that follow a joint normal distribution. The price

p is endogenous and depends on the observed and unobserved characteristics and on some cost

shifters c1 and c2. Consumer heterogeneity is present only in xc, and the random coefficient vi
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associated with xc follows various distributions depending on the simulation exercise. The sample

size T varies between 50, 100 and 200 markets. We can summarize the DGP as follows:

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξjt + εijt ξjt ∼ N (0, 1), εijt ∼ EV 1,

and


xa,j

xb,j

xc,j

 ∼ N




0

0

0

 ,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1



 ,

pjt = 1 + ξjt + ujt +
c∑

k=a

xkjt + c1jt + c2jt with uj,t ∼ U [−4,−2], c1jt ∼ U [2, 4] and c2jt ∼ U [3, 5].

Market shares are generated by integrating over 20, 000 consumers. This allows us to essentially

remove the approximation error between the observed and theoretical market shares.

6.2 Counterfactuals under an alternative distribution

We now present a simple exercise to illustrate how the misspecification of random coefficients can

affect the estimation of quantities of interest such as price elasticities and cross-price elasticities.

To do so, we simulate data using the simulation design introduced above and we take various

distributions for the random coefficient vi (respectively: Gaussian mixture, Uniform, Chi-square,

Exponential, Student, Gamma). We ensure that all the distributions have the same mean and

variance (3 and 3, respectively). For each distribution, we simulate T = 100 markets of data

and we estimate the model either assuming no heterogeneity (simple logit) or assuming that vi is

normally distributed. We replicate the same exercise 500 times for each distribution. This allows

us to recover the mean estimate for the parameters as well as to construct 95% “confidence bins”

(by trimming the observations below the 2.5% quantile and above the 97.5% quantile). We plot

the true densities and their estimated counterparts under the normal and logit assumptions in

Figure 1. We observe that the estimated logit parameters and the estimated means of the normal

distributions always coincide and are close to 3 for all the distributions. However, there is some
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variation between the different specifications. For instance, the estimated means are larger with

the exponential distribution. The estimated variances also vary from one specification to the other.

The estimated variances for the exponential distribution are smaller, while they are larger for the

student distribution.

Figure 1: True densities and estimated densities under normal and logit specifications
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In a second stage, we simulate N = 5, 000 draws from the true distributions as well as from the

estimated logit and normal approximations to compute the demand, the price-elasticity and the

cross-price elasticity for the product j∗ with the highest value for xc.
21 The cross-price elasticity is

arbitrarily taken for product j = 1 with respect to pj∗ . We derive the quantities of interest for 100

equally spaced values of pj∗ ranging in ]0, 10[. We plot the elasticities in Figure 2 and cross-price

elasticities in Figure 3 generated by the true distribution as well as those generated by the logit

and normal approximations, respectively. We proceed similarly with the demand functions. We

see in Figure 9 in Appendix).

One can observe that, as expected, the logit specification poorly replicates the substitution pat-

21The expressions for both price-elasticities and the cross-price elasticities are in Appendix D.1.
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terns. In particular, it consistently overstates the magnitude of the elasticities and cross-elasticities

with respect to the true ones. The absence of consumer heterogeneity on characteristic c implies

that consumers can “renounce’ more easily to product j∗ when its price increases. By intro-

ducing some heterogeneity, the normal approximation somewhat attenuates this issue. However,

significant discrepancies in the shape of elasticities and cross-price elasticities remain. As most

counterfactual analyzes rely on the substitution patterns generated by the model, these differences

will inevitably create significant biases.

Figure 2: Price elasticities
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Figure 3: Cross-price elasticities
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6.3 Finite sample performance of the specification test

We now study the empirical size and power of our test under different sample sizes and for

different sets of testing and estimating instruments. Once again, the data are generated according

to the simulation design exhibited previously for various distributions of vi. The assumption made

throughout the simulations is H0 : f ∈ F0, where F0 is the family of normal distributions. In

other words, we always assume that the random coefficient is normally distributed and we test

this hypothesis. We set the nominal size to 5%. We study the finite sample performances of

the specification test that we presented in Section 5 using different sets of estimation and testing

instruments. For estimation, we take the instruments commonly adopted by practitioners: the

differentiation instruments of Gandhi and Houde (2019) and the ”optimal” instruments of Reynaert

and Verboven (2014). Both of these sets are approximations of the classical optimal instruments.

Second, we compare the performance of the test when performing the standard Sargan-Hansen J

test (i.e. when we use the same instruments for testing and estimation) and when we use the global

and local approximations of the MPI that we constructed in Sections 4.2 and 4.1. We denote the
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latter tests as I Local and I Global respectively. The BLP estimator is computed following the

NFP GMM procedure described in Section 5.1. For the optimization, only an analytic Jacobian

is provided. We ensure that the number of tested restrictions is of the same magnitude across the

different sets of instruments. More details on the exact sets of instruments and on the estimation

procedure for this specific set of simulations are given in Appendix D.2.

6.3.1 Empirical size

The size is the probability of rejecting the null hypothesis when the null is true, so we compute

the empirical size by counting and averaging the number of times we reject the null for nominal

size 5% over the 1, 000 simulations when the random coefficient vi is normally distributed. Below

in Table 1, we report the empirical sizes of the test with the different sets of instruments described

above for the different sample sizes T ∈ {50, 100, 200} and for different distributions of the RC

such that vi ∼ f ∈ F0.

Table 1: Empirical size for nominal size 5% (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local

vi ∼ N (−1, 0.52) 0.294 0.083 0.091 0.145 0.078 0.063 0.138 0.078 0.058 0.094 0.084 0.047 0.08 0.052 0.053 0.064 0.05 0.04

vi ∼ N (0, 0.752) 0.293 0.084 0.085 0.148 0.081 0.071 0.137 0.061 0.06 0.1 0.059 0.05 0.074 0.053 0.045 0.062 0.048 0.036

vi ∼ N (1, 12) 0.287 0.084 0.083 0.142 0.084 0.073 0.142 0.055 0.054 0.098 0.053 0.047 0.079 0.042 0.03 0.058 0.035 0.025

vi ∼ N (2, 22) 0.288 0.087 0.077 0.145 0.071 0.072 0.138 0.069 0.051 0.099 0.053 0.056 0.077 0.044 0.041 0.069 0.037 0.044

vi ∼ N (3, 32) 0.287 0.089 0.071 0.137 0.075 0.066 0.145 0.074 0.06 0.098 0.06 0.061 0.076 0.044 0.037 0.061 0.046 0.046

We observe that with a moderate sample size (T = 50, J = 12), all the tests are over-sized.

This is within expectations and due to the approximations inherent to the estimation of the

BLP models as described in Section 5 and the relatively large number of instruments used for

estimation and testing purposes.22 However, we notice that the Sargan-Hansen J tests are much

more over-sized than the tests with the interval instruments: the rejection rate is above 25% for

22The number of over-identifying restrictions lies between 6 and 8. The Sargan-Hansen J tests are known to

suffer from size distortions as the number of instruments increases.
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the Sargan-Hansen J test with differentiation instruments vs around 8% for the I test. Increasing

the sample size improves the tests’ empirical levels and shifts them towards the nominal level,

which is a good indication of the validity of our test. Even with a relatively large number of

markets (T = 200), the Sargan-Hansen J tests remain slightly oversized (rejection rate is still

slightly above 5%). On the other hand, for the test with interval instruments, the empirical size

appears to match the nominal level for all but two configurations, where it seems to be slightly

undersized.

6.3.2 Empirical power

Power is the probability of rejecting the null hypothesis under an alternative. We compute the

empirical power by counting and averaging the number of times we reject the null for the test

of nominal size 5% over the 1000 simulations when the distribution of random coefficients is

misspecified. The simulation setup remains the same as previously with the only modification

being that the true distribution of vi is now either a mixture of normals or a Gamma. We report

the power against the different alternatives in the subsequent tables. The main takeaway from our

results is that the test with the interval instruments as testing instruments (I global and I local)

largely outperforms the traditional Sargan-Hansen J-test against all the alternative distributions

considered in our simulations.

Power against Gaussian mixture alternatives. We simulate data with the random coeffi-

cients distributed according to the Gaussian mixtures described below. We plot the true distri-

butions in Figure 4. We report the results in Table 2. We observe that the test with the interval

instruments has great power against all the mixtures tested. The rejection rates go to 1 very

quickly in comparison to the Sargan-Hansen J tests.

v = Dv1 + (1−D)v2, P(D = 1) = p, P(D = 0) = 1− p,

v1 ∼ N
(
−
√

3p

1− p
+ 2, 1

)
v2 ∼ N

(√
3(1− p)

p
+ 2, 1

)
,

41



with p ∈ {0.1; 0.2; 0.3; 0.4; 0.5}.

Figure 4: Densities, Gaussian mixture alternatives
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Table 2: Empirical power, Gaussian mixture alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Mixture 1 0.533 0.991 0.987 0.719 0.989 0.989 0.604 1 1 0.967 1 1 0.829 1 1 1 1 1

Mixture 2 0.626 0.996 0.998 0.613 0.997 0.998 0.723 1 1 0.905 1 1 0.933 1 1 1 1 1

Mixture 3 0.629 0.992 0.995 0.43 0.996 0.997 0.741 1 1 0.7 1 1 0.941 1 1 0.977 1 1

Mixture 4 0.601 0.983 0.982 0.275 0.981 0.981 0.713 1 0.999 0.368 1 1 0.921 1 1 0.672 1 1

Mixture 5 0.56 0.907 0.904 0.157 0.9 0.906 0.635 0.993 0.995 0.124 0.995 0.996 0.855 1 1 0.146 1 1

Power against Gamma alternatives. We simulate data with the random coefficients dis-

tributed according to the Gamma distribution described below. We plot the true distributions in

Figure 5. We report the results in table 3. We observe that the test with interval instruments

has great power against all the Gamma distributions tested except for the first one, which we can

see on the plot has a distribution that is relatively close to a normal distribution. Even for the

first Gamma distribution, it still outperforms the traditional sets of instruments. For all the other

Gamma distributions, the rejection rates go to 1 very quickly in comparison to the Sargan-Hansen

J-tests. This confirms the superiority of the interval instruments in detecting misspecification in
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the distribution of random coefficients. In Appendix D.2, we also study the power properties of

our test against local alternatives.

v ∼ Γ(2, k) with k ∈ {0.25, 0.5, 0.75, 1, 1.5}

Figure 5: Densities, Gamma alternatives
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Table 3: Empirical power, Gamma alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Gamma 1 0.293 0.106 0.093 0.142 0.082 0.074 0.154 0.083 0.073 0.094 0.092 0.08 0.118 0.155 0.139 0.066 0.156 0.138

Gamma 2 0.516 0.747 0.752 0.14 0.781 0.77 0.562 0.983 0.978 0.095 0.982 0.98 0.492 1 1 0.08 1 1

Gamma 3 0.607 0.96 0.962 0.157 0.963 0.969 0.693 0.998 1 0.156 1 1 0.922 1 1 0.161 1 1

Gamma 4 0.622 0.97 0.99 0.207 0.962 0.995 0.748 0.999 1 0.263 1 1 0.933 1 1 0.412 1 1

Gamma 5 0.687 0.991 0.999 0.371 0.988 0.999 0.812 1 1 0.585 1 1 0.976 1 1 0.865 1 1

6.4 Finite sample performance of interval instruments for estimation

In our last simulation exercise, we evaluate the performance of our interval instruments in estimat-

ing the parameters associated with the RC when the distribution of random coefficients is flexibly

parametrized. To do so, we simulate data with a distribution of random coefficients following
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a mixture of Gaussians and we estimate the parameters of this mixture. We provide a method

to estimate the parameters when the distribution of the RC is a mixture in Section C.6 of the

Appendix. In particular, we provide a new parametrization of the model, which yields substantial

practical gains and may be of interest to researchers independent of the rest of the paper. The

simulation design remains the same as previously. We assume that the random coefficient vi is

distributed according to the following mixture: vi ∼ Di N (−2, 0.5) + (1 − Di) N (4, 0.5) with

P(Di = 1) = 0.25. Thus, there are 5 parameters associated with the distribution of RC: the

means and variances of each component of the mixture and the mixing probability. Our objective

is to compare the performance of the global and local interval instruments with the instruments

commonly used by practitioners: the differentiation instruments from Gandhi and Houde (2019)

and the “optimal instruments” from Reynaert and Verboven (2014). In Table 4, we report the

empirical biases and the square root of the MSE for the estimators of the non-linear parameters

for each set of instruments and for the different sample sizes. In Appendix D.3, we report the

same information for the linear parameters (see Tables 14, 15, and 17) as well as the distribution

of the empirical distribution of the non-linear estimates. Table 4 allows us to directly compare the

performances of the three sets of instruments in estimating the non-linear parameters. We first

observe that for all the sets of instruments, the empirical biases and
√
MSE of the estimators

decrease when the sample size increases, which is reassuring. Furthermore, it appears clearly that

the differentiation instruments perform worse than the ”optimal instruments” and the interval

instruments. The empirical
√
MSE of the estimators with the differentiation instruments is up

to 12 times larger than with the interval instruments and up to 6 times larger than with the ”op-

timal instruments”. We reach the same conclusions when we study empirical biases. The interval

instruments appear to perform better than the ”optimal instruments” even if the difference is

less significant than with the differentiation instruments. For the sake of conciseness, we do not

report the results obtained with a mixture of 3 components but the observations we make with

two components are even more exacerbated. In Appendix D.3, as a means of comparison, we

perform the same exercise when the distribution of random coefficients is a simple Gaussian and

here, we do not observe any significant differences between the different sets of instruments, which

confirms that the interval instruments make a difference when the distribution of RCs is flexible.
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Table 4: Estimation non-linear parameters of the mixture (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL

Sample size true -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25

T=50, J=12
bias 0.214 0.184 -0.022 -0.045 0.027 0.076 0.059 0.026 -0.111 0.01 0.017 0 -0.045 0.004 0.005 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.633 0.734 0.281 0.35 0.075 0.361 0.483 0.212 0.281 0.036 0.277 0.391 0.227 0.259 0.024 0.251 0.34 0.214 0.244 0.019

T=50, J=20
bias 0.189 0.347 0.022 -0.081 0.025 0.074 0.11 0.028 -0.089 0.01 0.013 0.042 -0.018 -0.003 0.004 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.566 0.887 0.184 0.291 0.059 0.328 0.563 0.163 0.228 0.033 0.248 0.415 0.166 0.22 0.021 0.228 0.38 0.15 0.184 0.018

T=100, J=12
bias 0.233 0.226 0.02 -0.066 0.027 0.054 0.037 0.019 -0.066 0.007 0.004 -0.012 -0.027 0.005 0.002 0 0 -0.028 0.007 0.001

√
MSE 0.592 0.703 0.256 0.305 0.072 0.279 0.4 0.154 0.211 0.028 0.167 0.282 0.157 0.201 0.013 0.127 0.225 0.143 0.164 0.005

T=100, J=20
bias 0.198 0.423 0.047 -0.101 0.025 0.074 0.107 0.033 -0.074 0.01 -0.009 -0.005 -0.008 -0.009 0.001 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.552 0.89 0.164 0.27 0.055 0.311 0.52 0.129 0.194 0.034 0.115 0.264 0.115 0.169 0.005 0.104 0.226 0.103 0.125 0.004

T=200, J=12
bias 0.184 0.167 0.011 -0.049 0.019 0.026 0.011 0.021 -0.061 0.004 -0.006 -0.027 -0.015 -0.001 0.001 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.466 0.601 0.176 0.262 0.053 0.184 0.313 0.113 0.172 0.018 0.088 0.219 0.108 0.164 0.003 0.091 0.174 0.099 0.123 0.003

7 Empirical application

The objective of the empirical exercise is twofold. First, we want to verify how well our instru-

ments perform at estimating a flexible distribution of RCs using a real data set. Second, we want

to study how the shape of the distribution of RCs can modify key counterfactual quantities such

as the price elasticities or the pass-through, and check whether the results we obtain are consistent

with the findings in Miravete et al. (2022). To do so, we estimate demand for cars using data on

new car registrations in Germany from 2012 to 2018.23 There are many reasons to focus on the car

market. First, cars are highly differentiated products, which makes the BLP framework particu-

larly adapted to this market. As a result, the BLP demand model has been widely applied to study

the car industry (e.g., Berry et al. (1995), Grigolon et al. (2018), Petrin (2002)) and one can easily

compare our results with previous results obtained in the literature under different specifications.

Second, there are many policy-relevant questions related to this market. In particular, the role of

road transport in air pollution is significant and many countries have implemented tax policies to

reduce the CO2 emissions generated by car transportation.24 An important strand of the litera-

23The dataset was kindly provided to us by Kevin Remmy https://kevinremmy.com/research/.
24In 2017, road transport was responsible of approximately 19% of total greenhouse has

emissions in EU-28 Retrieved from https://www.eea.europa.eu/data-and-maps/indicators/

transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12 on Octo-
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ture has investigated the performance of these different taxation schemes (Alberini and Horvath

(2021), Allcott and Wozny (2014), D’Haultfœuille, Givord, and Boutin (2014), Durrmeyer (2022),

Durrmeyer and Samano (2018), Gillingham and Houde (2021), Grigolon et al. (2018), Huse and

Koptyug (2022), Kunert (2018)). Other policy-relevant questions include the impact of import

tariffs (Miravete et al. (2018)) and the determinants of market power (Berry et al. (1995), Grieco,

Murry, and Yurukoglu (2022)). To answer these questions, the researcher must often estimate the

demand for cars. The credibility of the implied analysis depends critically on how well the model

can reproduce the underlying substitution patterns and the shape of the demand curve. To this

end, it is essential to have a demand system that is sufficiently flexible, and particularly so with

respect to the random coefficient on price. In this section, we use our instruments to estimate

a Gaussian mixture as the random coefficient associated with price. Moreover, we use our test

to assess how moving from the usual Gaussian RC to the Gaussian mixture decreases the degree

of misspecification. Finally, we compare the counterfactual quantities under a Gaussian mixture

and the traditional specifications (Gaussian RC and logit). In line with the findings in Miravete

et al. (2022), our results indicate that the Gaussian mixture yields higher pass-through rates and

curvatures.

7.1 Data

The data set includes state-level new car registrations, publicly available by the German Federal

Motor Transport Authority (KBA) from 2012 to 2018. This gives us 112 markets defined by state-

year pairs. Data on car characteristics and price are scraped from General German Automobile

Club and include horsepower, engine type, size, weight, fuel cost, CO2 emission, number of doors,

segment, and body type. The data set is at a granular level where every car is uniquely identified by

its manufacturer and its type key code (HSN/TSN) that is defined according to the characteristics

of the car. Following the literature, we aggregate products with the same brand, model, engine

type, and body combination (e.g. BMW-1 Series-Diesel-Hatchback).25 Likewise, we follow the

literature and define the market size as the number of households in the market. To construct

ber 21, 2022.
25In aggregating the products from the HSN/TSN level, we use the characteristics of the car with the highest

sales.
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market shares, we simply divide new car registrations of a given product by the market size. The

data set is complemented by information on demographics such as the number of households or

the average income per household at the state-year level and yearly average gas price data from

ADAC.26

Summary statistics. The shares of products sold by engine type are presented in Table 5.

We focus our analysis on combustion engine vehicles as in our sample period electric-vehicle cars

constitute a small market share (always less than 5% of the sold vehicles) and can be seen as a

distinct market. Between diesel and gasoline cars, we observe that the market share for diesel cars

decreases over time, starting from 2016. The timing is in line with the emissions scandal, known

as the Dieselgate, which started in September 2015.

Table 5: Shares (%) of new registrations by engine type

Year

Fuel Type 2012 2013 2014 2015 2016 2017 2018

Diesel 46.8 46.1 46.3 46.4 43.9 36.2 30.0

Gasoline 52.6 52.9 52.6 52.3 54.4 60.8 66.5

Battery EV 0.1 0.2 0.3 0.4 0.3 0.7 1.1

Hybrid EV 0.5 0.8 0.7 0.6 1 1.4 1.6

Plug-in hybrid EV 0 0 0.1 0.3 0.4 0.9 0.9

Table 6 provides sales-weighted averages for prices and observed characteristics. We observe

that the difference in fuel consumption and resulting fuel costs steadily ranks diesel above gasoline.

However, the average price of diesel cars sold is higher than gasoline cars. This implies a potential

trade-off in terms of the costs of car ownership at the time of purchase. With a fixed mileage in

mind, a consumer with high sensitivity to fuel costs might be willing to pay a higher price for a

more fuel-efficient car. We also observe that the horsepower and the size of the newly registered

cars increase over time.

26State level income https://ec.europa.eu/eurostat/web/products-datasets/-/nama_10r_2hhinc
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Table 6: Summary Statistics (Sales weighted)

Year

2012 2013 2014 2015 2016 2017 2018

Diesel

Price/income 0.74 0.72 0.73 0.72 0.71 0.69 0.68

Size (m2) 8.31 8.31 8.32 8.36 8.42 8.48 8.53

Horsepower (kW/100) 1.09 1.07 1.11 1.11 1.14 1.16 1.21

Fuel cost (euros/100km) 7.90 7.18 6.63 5.53 4.94 5.25 5.83

Fuel cons. (Lt./100km) 5.19 4.98 4.89 4.73 4.61 4.61 4.71

CO2 emission (g/km) 136.19 130.50 127.69 123.58 120.42 120.49 123.27

Nb. of products/market 133 138 146 150 151 149 143

Gasoline

Price/income 0.46 0.46 0.46 0.46 0.46 0.45 0.43

Size (m2) 7.23 7.27 7.28 7.30 7.36 7.46 7.53

Horsepower (kW/100) 0.79 0.78 0.80 0.82 0.85 0.88 0.91

Fuel cost (euros/100km) 9.48 8.61 8.11 7.27 6.69 7.06 7.40

Fuel cons. (Lt./100km) 5.76 5.47 5.40 5.31 5.25 5.34 5.38

CO2 emission (g/km) 135.80 128.18 125.27 122.89 121.22 122.86 123.26

Nb. of products/market 157 171 179 185 186 193 188

Note: Provided statistics are sales weighted averages across products. Total number of markets (State*Year) is 112 .

Inter-market variation. Our dataset contains both geographical variation and time variation,

as we observe the sales in every state in Germany over the period 2012-2018. States in Germany

differ significantly in terms of income per inhabitant, population density and average distance

driven.27 It is fundamental to take this inter-market variation into account in our empirical

specification for two reasons. First, our model postulates that consumers’ preferences are the

same across markets. However, we observe that the market shares vary from one state to the

other even if the choice set remains the same. This feature of the data can only be explained if

27For the population density 2019 (inh/km2): 69 (Mecklenburg-Vorpommern) to 4118 (Berlin) (from Fed-

eral Statistical Office of Germany (Destatis)), GDP per capita 2019: 28.9k (Mecklenburg-Vorpommern) to 67k

(Hamburg) (retrieved from https://www.ceicdata.com/en/germany/esa-2010-gdp-per-capita-by-region/

gdp-per-capita-bremen on 05 November 2022). For average driving distance in 2019: 13079 km (Mecklenburg-

Vorpommern) to 9531 (Berlin) retrieved from https://de.statista.com/statistik/daten/studie/644381/

umfrage/fahrleistung-privater-pkw-in-deutschland-nach-bundesland/ on 19 September 2022.
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we let the preferences vary from one market to the other. Second, in Section 2.3, we saw that

there needs to be sufficient variation in the product characteristics across markets to identify the

distribution of RCs. By interacting product characteristics with state demographics, we achieve

both objectives: we shift the preferences to a more common representation and we create variation

in the product characteristics across markets. To choose which interaction terms to include in the

utility function, we first create market specific sales-weighted characteristics for the following

variables: price, fuel cost, size, horsepower, height, gasoline dummy, and foreign dummy (equal

to one if the manufacturer of the car is not German). Then, we regress these quantities on the

demographics of interest: average income, population density, and a time trend. Last, we select

the interaction terms that explain the best the variation in sales-weighted characteristics (namely,

the variables with a p-value below 1e−10). The results of these regressions are presented in Table

7. They suggest that income shifts positively the preferences for price, size, and horsepower (i.e.

higher income is associated with larger cars, and higher horsepower). In contrast, income shifts

negatively the preferences for foreign status, height, and gasoline status.28 Although weaker, a

similar pattern is observed for the effect of population density on car characteristics.

Table 7: Linear regressions of sales-weighted car characteristics on demographic characteristics

Income(/1000) Population density (/100) Time trend

Price(×1000) 0.138∗∗ 0.069∗ 0.286∗

(0.013) (0.011) (0.059)

Fuel cost (euros/100km) -0.0069 -0.0036 0.3587∗∗

(0.0063) (0.0056) (0.0296)

Size(m2) 0.0058∗∗ 0.0018∗ 0.0176∗

(0.00079) (0.00070) (0.00371)

Horsepower (KW/100) 0.0028∗∗ 0.0012∗ 0.0129∗∗

(0.00028) (0.00025) (0.00132)

Foreign −0.0050∗∗ −0.0014∗ 0.0295∗∗

(0.00052) (0.00046) (0.00246)

Height(m) −0.00051∗∗ −0.00043∗∗ 0.00181∗

(0.000061) (0.000054) (0.000286)

Gasoline −0.0067∗∗ −0.0024∗ 0.0131∗

(0.00059) (0.00053) (0.00280)

Note: * p-value lower than 0.01, ** p-value lower than 1e−10.

28In the main analysis, we use price/income to capture the income effect.
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Instruments for the endogeneity of price. To instrument for price, we use a combination of

variables on the intensity of competition and cost shifters. To measure the intensity of competition,

we consider the number of competing products of the same class and engine type in a given market,

and the number of competing products of the same engine type in a given market. As for cost

shifters, we use three complementary datasets: the mean hourly labor cost, the price of steel

(interacted with the weight of the car), and exchange rates between Germany and the country of

assembly.

1. Labor cost: we use the mean nominal hourly labor cost per employee in the manufactur-

ing sector of the country of assembly of the models. The data on labor costs come from

International Labor Organization Statistics (ILOSTAT).29

2. Price of steel: we collect the price of steel futures in January of each year.

3. Exchange rates: we construct the exchange rates between Germany and the country of

assembly of each car model using exchange rate data from OECD.30

7.2 Empirical specification

The indirect utility of consumer i, purchasing product j in market t (defined as a state-year pair)

is given by:

uijt = x′
1jtβ + ξ∗jt︸ ︷︷ ︸

δjt

+x′
2jtαi + εijt.

The mean utility δjt = x′
1jtβ+ ξ∗jt captures homogeneous preferences. The variables in x1jt consist

of the product characteristics for which we assume that there is no preference heterogeneity and

the interaction terms that explain the best the geographical variation observed in Table 7.31

The demand shock on product j is decomposed as follows:

ξ∗jt = Brandj + Statet + Y eart + ξjt,

29Retrieved from https://www.ilo.org/ilostat-files/Documents/Excel/INDICATOR/LAC_4HRL_ECO_CUR_

NB_A_EN.xlsx
30Retrieved from https://data.oecd.org/conversion/exchange-rates.htm
31The choice of the variables that display preference heterogeneity is based on our understanding of the car market

and follows current empirical practices for this specific market. However, we understand the limitations of this

approach, and we are working on an iterative procedure to select the variables that display consumer heterogeneity.
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where Brandj is a brand fixed effect that captures the unobserved quality of the brand of product

j, Statet captures state specific demand shocks that are fixed across time and products and Y eart

captures year-specific demand shocks. Therefore, Statet and Y eart play a role in explaining the

variation in the overall demand for cars (or equivalently, in the share of the outside option).

The variables in x2jt are the product characteristics that display preference heterogeneity and

which we augment with a RC. In our specification, we include the price, the size, and the gasoline

dummy in x2jt. We estimate the model assuming different specifications for the distribution of

RCs. First, we estimate the model without any consumer heterogeneity. Second, we assume that

all the RCs are normally distributed. Finally, we consider a Gaussian mixture on price to increase

flexibility with respect to the preferences on price. For each different specification, we perform the

specification test developed in Section 5 to see how the degree of misspecification evolves as we

increase flexibility on the distribution of RCs.

7.3 Estimation

Estimation conditional logit (no heterogeneity). First, we estimate the logit model, and

we report the results in Table 8.32 As expected, we find a negative effect of price and fuel cost on

the utility. The interaction terms indicate that the utility derived from size, horsepower, foreign

status and gasoline all decrease with income. Moreover, we observe that the aversion to fuel

cost decreases over time, which is likely an artifact implied by increasing fuel cost over the years.

In contrast, the utility derived from horsepower appears to increase with time. However, these

time effects are smaller in comparison with the heterogeneity due to income. To facilitate the

interpretation of these results, we consider a household with a e47,000 income in 2018. This

corresponds to the mean income in 2018. For this household, the implied effect of size on the

utility is negative, whereas a positive utility is derived from higher horsepower, the car’s brand

being German, height, and gasoline engines.

32In Appendix E, we provide results for baseline specifications including the simple conditional logit and the

nested logit (with and without state and year fixed effects).

51



Table 8: Logit estimation

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income -2.4 1.3e-01 - - - - - -

Fuel Cost -0.25 8.6e-03 - - - - 0.014 1.7e-03

Size(m2) 0.15 4.2e-02 -0.0055 8.5e-04 - - - -

Horsepower(KW/100) 2.7 1.8e-01 -0.019 2.4e-03 - - -0.081 7e-03

Foreign 0.18 7.1e-02 -0.017 1.4e-03 - - - -

Height(m) 3.5 2.3e-01 -0.0015 4.6e-03 -0.036 4.7e-03 - -

Gasoline 1.1 6.3e-02 -0.011 1.2e-03 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with Gaussian random coefficients. We now increase the flexibility in the tra-

ditional manner, by assuming that the RCs on the price, the size and the gasoline indicator follow

a Gaussian distribution. We report the estimates obtained under this new specification in Table 9.

The signs for the homogeneous preference parameters in x1jt remain the same and the magnitude

of the effects do not change significantly. The sign associated with the mean effect of price remains

negative. In contrast, the sign on the mean effects of the size and the gasoline dummy are inverted

with respect to the logit specification. This last observation illustrates an important empirical

finding: average effects are not invariant to the introduction of preference heterogeneity. In other

words, the logit estimates do not necessarily match the means, when we introduce a Gaussian RC.

Moreover, the three RCs display high variances and particularly so for the gasoline dummy, which

indicate a high level of heterogeneity with respect to these three characteristics.33

33The estimation is performed using the parametrization proposed in Ketz (2019), which avoids boundary issues

at 0 for the variances of the RCs.
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Table 9: Traditional BLP (Gaussian RC)

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.29 5.1e-03 - - - - 0.031 9.2e-04

Size(m2) - - -0.0053 3.1e-04 - - - -

Horsepower(KW/100) 0.77 1.5e-02 0.0078 6.8e-04 - - -0.12 5.6e-03

Foreign 0.21 5.4e-02 -0.019 1.1e-03 - - - -

Height(m) 3.4 1.1e-02 -0.0088 1.2e-03 -0.032 3.6e-04 - -

Gasoline - - -0.0028 8.6e-04 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Price/income -2.4 2e-02 0.96 5.9e-03 - - - -

Size(m2) -0.37 1.5e-02 0.43 3.6e-03 - - - -

Gasoline -2.3 4.4e-02 4 4.1e-04 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with a Gaussian mixture on the price. Finally, we increase the flexibility

of the model, by replacing the Gaussian RC on the price variable with a Gaussian mixture of 2

components. We focus on the price as the literature shows that the distribution of price sensitivity

is absolutely key for many quantities of interest in IO, including the price elasticities and the

pass-through. We report the estimates obtained under this new specification in Table 10. The

results point out the presence of two distinct modes in the distribution of the RC associated with

price. The two modes reveal the presence of two groups of consumers: the first one with high

price sensitivity (with the mean component at -9.6) and the second one with low price sensitivity

(with the mean component at -2.5). Moreover, the distribution is heavily asymmetric with the

probability of the first mode being 0.9, which entails that the majority of consumers are highly

sensitive to price. This last feature is completely absent in the logit and Gaussian specifications,

which seem to capture only the first mode of the distribution as we can see in Figure 6. Once again

the homogeneous parameters are relatively unchanged with respect to the previous specifications.

The Gaussian RC on the gasoline still displays a high variance (the standard deviation of the RC
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equals 2.8).

Table 10: Estimation Gaussian mixture on Price

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.23 5.8e-03 - - - - 0.026 1e-03

Size(m2) - - -0.0055 3.7e-04 - - - -

Horsepower(KW/100) 1.8 3.6e-02 -0.0016 1.1e-03 - - -0.1 7e-03

Foreign 0.26 6.1e-02 -0.021 1.2e-03 - - - -

Height(m) 3.5 1.1e-02 -0.012 1.2e-03 -0.032 3.7e-04 - -

Gasoline - - -0.026 1.3e-03 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Size(m2) 0.5 1.9e-02 0.1 6.7e-02 - - - -

Gasoline -0.45 3.8e-03 2.8 9.1e-03 - - - -

Gaussian Mixture β̂1 S.E σ̂1 S.E β̂2 S.E σ̂2 S.E

Price/income -9.6 1.8e-02 0.1 1.8e-03 -2.5 1.8e-02 0.35 5.2e-04

Probability 0.9 6.8e-05

Note: Brand, Year and State FE’s are included.

In Figure 6, we plot the estimated distribution of random coefficients under the three spec-

ifications we consider. We observe little to no variation in the homogeneous parameters from

one specification to the other. The main difference comes from the introduction of the Gaussian

mixture on price, which reveals the presence of a large group of highly price sensitive consumers.
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Figure 6: Estimated distributions of RCs in the three specifications
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Specification Test. By increasing the flexibility on the distribution of RCs, we recover less

precise estimates and the model becomes more difficult to estimate. Thus, it is important to show

that the additional flexibility substantially reduces the misspecification of the model. To quantify

the degree of misspecification accross the different models, we keep the same set of estimation

instruments across the different specifications of RCs and we report the value of the associated

Sargan-Hansen J statistics in each case. Moreover, for every model, we follow the procedure

developed in Section 5 to test if the distribution of RCs on price is well specified. We use the

global interval instruments and we denote this test “Interval test”. We report the values of the

test statistics and the degrees of freedom of the chi-square under the null in Table 11. We observe

an important decrease in the Sargan-Hansen J statistic when we transition from the logit to the

Gaussian RC. However, the decrease in the Sargan-Hansen J statistic is much larger when we

transition from the Gaussian RC on price to the Gaussian mixture, which indicates that the

Gaussian mixture performs much better than the simple Gaussian at capturing the underlying

heterogeneity in price sensitivity. The interval test displays a similar behavior, with the largest

decrease in the test statistic stemming from the transition from the Gaussian RC to the Gaussian
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mixture.

Table 11: Evolution of misspecification with flexibility

Instruments Logit Gaussian RC Gaussian mixture

Test Stat. Critical val. DF Stat. Critical val. DF Stat. Critical val. DF

J test 2755.7 40.1 27 2341.7 36.4 24 950.3 33.9 21

Interval test 1331.9 14.1 7 999.4 14.1 7 244.0 14.1 7

7.4 Counterfactual quantities

The objective of this subsection is to illustrate how changes in the distribution of the RC associated

with price affect many counterfactual quantities of interest in empirical IO, such as the price

elasticities, the marginal costs faced by car manufacturers, and the pass-through of cost. In order

to compare our empirical results with the findings in Miravete et al. (2022), we also calculate the

demand curvature under the different specifications. They show that a large demand curvature is

necessary to recover a pass-through larger than one.

In the following, we study the effect of different specifications on the price elasticities, demand

curvature, marginal costs and mark-ups, and finally on the pass-through. To recover marginal

costs and mark-ups, we assume that multi-product firms pricing under Bertrand-Nash pricing.

For the pass-through, we calculate the new equilibrium prices using fixed point iterations and,

following the literature, study the effect of increasing the marginal costs of each product by 1%

and recomputing the marginal cost. In Appendix E, we provide details on the calculation of

counterfactual quantities. In our computations, we use the year 2018, which is the last year of our

sample.

Summary of results. We report the median values for the five counterfactual quantities of

interest in Table 12. Several remarks are in order. First, the Gaussian mixture yields a much

lower price elasticity than the two other specifications. This is related to the emergence of a group

of highly price sensitive consumers in the mixture specification, which we fail to detect with the

logit and Gaussian RC specifications. Moreover, the low price elasticities that we recover in the

Gaussian and logit specifications, generate unreasonably low marginal costs (even negative ones
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as we can see in Figure 7) and excessive mark-ups. In contrast, this problem does not appear

with the Gaussian mixture. Finally, to link our results with the findings in Miravete et al. (2022),

we now focus on the demand curvature and the pass-through of cost. As expected, the logit

displays a curvature and a pass-through equal to 1. In contrast, we can see that the Gaussian

mixture displays a larger demand curvature than the other two specifications. This comes from

the skewness that the mixture induces in the distribution of price sensitivity. This last feature

implies that the Gaussian mixture yields a pass-through much greater than 1 (1.5 on average).

Unfortunately, the negative marginal costs we recover with the Gaussian RC prevent us from

computing the pass-through in this case.34

Table 12: Median counterfactual quantities under different specifications on RCs

RC distribution on price Logit Gaussian Gaussian Mixture

Own price-elasticity -1.2 -1.1 -2.6

Demand curvature 1.0 1.2 1.3

Marginal cost 9,366 1,929 20,105

Mark-up 24,048 29,572 11,066

Pass-through 1.0 - 1.5

In Figure 7, we plot the empirical distributions of the counterfactual quantities. We can see

in the plot featuring the distribution of marginal costs that the logit and Gaussian specifications

generate negative marginal costs for some of the cars. This is an indication that the price elasticities

implied by these specifications are too low in absolute value.

34Our algorithm to compute the new equilibrium prices after the change in cost does not converge.
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Figure 7: Empirical distribution of counterfactual quantities under different specifications
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Finally, in Figure 8, we plot the elasticity functions implied by the different specifications for

the 15 most popular cars in our sample. We observe important differences in the elasticities. The

Gaussian mixture generates lower price elasticities than the other two specifications. We do the

same exercise with the demand curves in Appendix E.
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Figure 8: Estimated elasticities under different specifications
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8 Conclusion

In this paper, we develop novel econometric tools to parsimoniously increase the flexibility of the

distribution of random coefficients in the BLP demand model initiated by Berry et al. (1995).

Specifically, we construct novel instruments designed to detect deviations from the true distribu-

tion of random coefficients. Building on these instruments, we provide a formal moment-based

specification test on the distribution of random coefficients, which allows researchers to test the

chosen specification without having to re-estimate the model under a more flexible parametriza-

tion. Our instruments are designed to maximize the power of the test when the distribution of
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RC is misspecified. By exploiting the duality between estimation and testing, we show that these

instruments can also improve the estimation of the BLP model under a flexible parametrization.

Our Monte Carlo simulations confirm that the interval instruments we develop in this paper out-

perform the traditional instruments both for testing and estimating purposes. Finally, we apply

these new tools to flexibly estimate the demand for cars in Germany. We show that these tools

can be applied to the equally popular mixed logit demand model with individual-level data.

In future work, we plan to see if we can generalize these instruments to other non-linear

moment-based models, as well as to the general problem of testing distributional assumptions in

structural models. From a broader perspective, our paper is part of an existent discussion on

the most effective way to model unobserved preference heterogeneity in structural models. Most

empirical frameworks feature a clear trade-off between the degree of flexibility one chooses and

the precision of the estimates one obtains. It is thus critical to understand how misspecification

on the unobserved heterogeneity affects the counterfactual quantities of interest. In the case of

the BLP demand model, our paper and others show that misspecification in the distribution of

random coefficients substantially distorts the substitution patterns as well as the shape of the

demand curve and, thus, is likely to significantly alter the counterfactual quantities.
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Appendices

A Extension to the mixed logit demand model

The main difference between the BLP demand model and the mixed logit model is that the

latter one assumes that the econometrician observes individual data. Let us consider the baseline

mixed logit model with no endogeneity and consumer level data.35 We observe the choices of N

consumers. The indirect utility function of consumer i making choice j ∈ {0, 1, . . . , J} is given by:

uij = x′
1ijβ0 + x′

2ijvi + εij, (12)

where

• εij is a preference shock that follows a type I extreme value distribution independent of all

other variables and across i, j;

• x1ij is a vector of product characteristics interacted with consumer characteristics of dimen-

sion K1 which display no preference heterogeneity;

• x2ij is a vector of product characteristics interacted with consumer characteristics of dimen-

sion K2 which display preference heterogeneity;

• vi is a vector of random coefficients of dimension K2 which jointly follows a distribution

characterized by a density f ;

Each consumer chooses the product that maximizes his or her utility. For any couple (f̃ , β̃),

demand for product j from consumer i writes:

∀j ̸= 0, ρj(xi, f̃ , β̃) =

∫
RK2

exp{x′
1ijβ̃ + x′

2ijv}

1 +
∑J

k=1 exp
{
x′
1ikβ̃ + x′

2ikv
} f̃(v)dv. (13)

For the outside option, we have:

for j = 0, ρj(xi, f̃ , β̃) =

∫
RK2

1

1 +
∑J

k=1 exp
{
x′
1ikβ̃ + x′

2ikv
} f̃(v)dv. (14)

35In the mixed logit case, the absence of endogenous variables is not an unrealistic assumption as the econo-

metrician can always model unobserved product quality by incorporating product fixed effects into the utility

function.
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Structural error. As we did in the case of the BLP demand model, we can define the structural

error generated by (β̃, f̃) as follows. Let yij equal to 1 if individual i chooses good j = 0, 1, . . . , J ,

the structural error writes:

ξij(f̃ , β̃) = yij − ρj(xi, β̃, f̃).

By construction, at the true (f, β), we have E[ξij(β, f)|xi] = E[yij|xi]−ρj(xi, β, f) = 0 a.s..The

notation xi refers to (xij)j=1,...,J .

Most powerful instrument and approximations. As in the aggregate demand model, we

want to derive the instruments with the greatest ability to detect misspecification in the distribu-

tion of RCs. Given that the model displays no endogeneity, the set of exogenous variables is simply

xi. Our objective is to find the functions of xi, which provides the most detection power against

a wrong distribution. With this objective in mind, we consider a situation where the econometri-

cian has a candidate (f0, β0) and wants to test H̄0 : (f, β) = (f0, β0) against Ha : (f, β) ̸= (f0, β0).

We proceed as in the BLP case and we derive the instrument that maximizes the power of the

associated moment based test. Second, we propose feasible approximations of the MPI that do

not depend on the fixed alternative.

For any set of testing instruments hD(xi), we have the following implication:

H0 : (f, β) = (f0, β0) =⇒ H ′
0 : E[hD(xi)ξij(f0, β0)] = 0.

We propose to test H0 indirectly through its implication H ′
0, which is a set of unconditional

moment conditions. We test H ′
0 with a moment-based test and the test statistic writes as follows:

SN(hD, f0, β0) = NJ

(
1

NJ

∑
i,j

ξij(f0, β0)hD(xi)

)′

Ω̂
−1

0

(
1

NJ

∑
i,j

ξij(f0, β0)hD(xi)

)
, (15)

with Ω̂0 a consistent estimator of Ω0 the asymptotic variance-covariance matrix of 1
NJ

∑
i,j ξij(f0, β0)hD(xi)

under H0:

Ω0 = E

[(
1√
J

∑
j

ξij(f0, β0)hD(xi)

)(
1√
J

∑
j

ξij(f0, β0)hD(xi)

)′]
.
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Assuming that (xi, yi) are i.i.d. across individuals and consistent with the probability model

defined by equations (12,13, 14) evaluated at (f, β), E[∥ξij(f0, β0)hD(xi)∥2] < +∞, and Ω0 has full

rank, we can show:

• under H0 : (f, β) = (f0, β0), SN(hD, f0, β0)
d−→

T→+∞
χ2
|hD|0 ,

• under H ′
a : E [hD(xi)ξjt(f0, β0)] ̸= 0, ∀q ∈ R+, P(SN(hD, f0, β0) > q) −→

T→+∞
1,

with | · |0 being the counting norm. The proof is almost identical to the proof of Proposition 2

and thus, we omit it. Following the same steps as the proof of Proposition 3, the expression for

the Most Powerful Instrument (that maximizes the slope of the test) writes:

h∗
D(xi) = E[ξij(f0, β0)

2|xi]
−1∆(xi, f0, β0, fa, βa),

where each component j of the correction term ∆(xi, f0, β0, fa, βa) writes:

∆(xi, f0, β0, fa, βa)j = ρj(xi, β0, f0)− ρj(xi, βa, fa)

=

∫
R

[
ρj(xi, β0, f0)−

exp{x′
1ijβa + x′

2ijv}
1 +

∑J
k=1 exp {x′

1ikβa + x′
2ikv}

]
fa(v).

Several remarks are in order. First, contrary to the BLP case, the correction term ∆
ξj
0,a is

a function of the exogenous variables xi, and thus we don’t need to compute its conditional

expectation as in the BLP model. The conditional variance term can be estimated, even if it is

challenging in practice. For the sake of exposition, we drop this term in the rest of the analysis.

As we did for the BLP case, we propose two feasible approximations of the MPI, which don’t

require the knowledge (βa, fa) and, which can be computed in practice.

• Local approximation. First, we provide a local approximation, which is accurate when

f0 is close to the true density fa. To derive this local approximation, we need to impose

additional restrictions on β0 and βa so that ∥βa − β0∥ = O
(∫

RK2
|f0(v)− fa(v)|dv

)
. This is

the purpose of Assumption 1
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Assumption 1. We assume that β0 = β∗
0 and βa = β∗

a where (β∗
0 , β

∗
a) are both pseudo

true values, which maximize the conditional expectation of their respective population log-

likelihoods. Namely,

β∗
0 = argmax

β̃∈RK1

E
[
L(xi, yi, β̃, f0)

∣∣xi

]
with L(xi, yi, β̃, f0) =

J∑
j=0

1{yij = 1} log(ρj(xi, β̃, f0))

β∗
a = argmax

β̃∈RK1

E
[
L(xi, yi, β̃, fa)

∣∣xi

]
with L(xi, yi, β̃, fa) =

J∑
j=0

1{yij = 1} log(ρj(xi, β̃, fa))

Now we can derive the following first order approximation of the ∆j(xi, f0, β0, fa, βa) around

f0.

Proposition 7.
Under Assumption 1, a first order expansion of ∆j(xi, f0, β0, fa, βa) around f0 writes:

∆j(xi, f0, β0, fa, βa) =

∫
RK2

exp{x′
1ijβ0 + x′

2ijv}
1 +

∑J
k=1 exp {x′

1ikβ0 + x′
2ikv}

(f0(v)− fa(v))dv +
∂ρj(xi, β, fa)

∂β̃

∣∣∣∣
β=β0

(βa − β0) +R0

with R0 = o
(∫

RK2
|f0(v)− fa(v)|dv

)
.

The proof is in Appendix B. Building on this approximation, we can discretize the integrals

as we did in the BLP case to circumvent the fact that we do not know fa.

E[∆j(xi, f0, fa)|xi] ≈
L∑
l=1

ω̄1l(fa)

[
ρj(xi, β0, f0)−

exp{x′
1ijβ0 + x′

2ijvl}
1 +

∑J
k=1 exp {x′

1ikβ0 + x′
2ikvl}

]
︸ ︷︷ ︸

π1,j,l(xi)

+
L∑
l=1

ω̄2l(fa)
∂

∂β

{
exp{x′

1ijβ0 + x′
2ijvl}

1 +
∑J

k=1 exp {x′
1ikβ0 + x′

2ikvl}

}
︸ ︷︷ ︸

π2,j,l(xi)

,

with {vl}l=1,...,L L points chosen in the domain of definition of fa, and ω̄l(fa) the unknown

weights associated with each point. The local interval instruments, in the mixed logit case,

write: (π1,j,l(xi), π2,j,l(xi)).
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• Global approximation. As we did, in the BLP case, we can also write a global approxi-

mation of the corection term. To do so, we replace the unknown βa by a known substitute

β0.
36 To circumvent the fact that fa is unknown, we replace the integral with a finite sum.

Namely, we have:

E[∆j(xi, f0, fa)|xi] ≈
L∑
l=1

ωl

[
ρj(xi, β0, f0)−

exp{x′
1ijβ0 + x′

2ijvl}
1 +

∑J
k=1 exp {x′

1ikβ0 + x′
2ikvl}

]
︸ ︷︷ ︸

π̄j,l(xi)

with {vl}l=1,...,L L points chosen in the support of fa, and ωl(fa) the unknown weights

associated with each point. The local interval instruments, in the mixed logit case, write:

(π̄1,j,l(xi))

Composite hypothesis. In practice, as in the BLP model, the researcher must make a para-

metric assumption on the distribution of random coefficients to estimate the model. Formally,

the econometrician assumes f belongs to a parametric family F0 = {f0(·|λ̃) : λ̃ ∈ Λ0}, where λ̃

is a parameter that must be estimated. In applied work, researchers typically assume that f is

normally distributed. The researcher may be interested in testing the validity of the specification.

The mixed logit is often estimated by conditional MLE. To test the validity of the specification, the

research must follow the same steps as the ones highlighted in Section 5. First, the researcher must

estimate a pseudo-true value θ0 = (β′
0, λ

′
0)

′ ∈ R|θ|0 , which maximizes the conditional expectation

of their respective population log-likelihoods under H0 : f ∈ F0. Namely:

θ0 = argmax
θ̃∈R|θ|0

E
[
L(xi, yi, β̃, f0(·|λ̃))

∣∣xi

]
with L(xi, yi, β̃, f0(·|λ̃)) =

J∑
j=0

1{yij = 1} log(ρj(xi, β̃, f0(·|λ̃))

Next, we test H ′
0 : E[hD(xi)ξij(f0(·|λ̃), β0)] = 0 with the moment based test exhibited above.

To derive the asymptotic distribution of SN(hD, f0(·|λ̂, β̂), we must now take into account the

parameter uncertainty stemming from the first stage estimation. As in the BLP demand model,

the integrals must be numerically computed to recover the theoretical probabilities implied by

36in our simulations, we find that the homogeneous parameters are usually close to each other even when the

distributions are somewhat distant from each other.
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the model, and compute the conditional likelihood. Thus, one must also take into account the

numerical approximations in the derivation of the asymptotic distribution.

B Proofs

B.1 Identification

In this subsection, we prove that under Assumption A, the distribution of random coefficients f

is non-parametrically point identified.

Proof. Proof of Proposition 1

We want to show that under Assumptions A, the following implication holds:

(f̃ , β̃) = (f, β) ⇐⇒ E[ξjt(f̃ , β̃)|zjt] = 0 a.s.

⇐⇒ E
[
ρ−1
j (st, x2t, f̃)− x′

1jtβ̃

∣∣∣∣zjt] = 0 a.s..

Step 1: First, we show that for any random permutation of indexes j → j′, the following

equivalence holds:

E[ξjt|zjt] = 0 a.s. ⇐⇒ E[ξjt|zj′t] = 0 a.s. ∀ j′.

As the new indexation is done exogenously, we have for any j′:

E[ξjt(f̃ , β̃)|zjt] = E[ξjt(f̃ , β̃)|zjt, j → j′] ≡ E
j′
[ξj′t(f̃ , β̃)|zj′t] a.s.,

with j → j′ indicates index j has been changed into j′. Consequently, we have:

E[ξjt(f̃ , β̃)|zjt] = 0 a.s. ⇐⇒ ∀j′ E
j′
[ξj′t(f̃ , β̃)|zj′t] = 0 a.s.

This last equivalence allows us to come back to the exogeneity condition assumed in Berry

and Haile (2014) and in Wang (2022): ∀k, E
[
ξjt
∣∣zjt, j = k

]
= 0 a.s.. The only difference being

that here j′ is determined completely randomly. Intuitively, the exogeneity condition required

for non-parametric identification of the demand functions is stronger than the one needed for the

non-parametric identification of the distribution of RC.
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Step 2: We now need to show the following equivalence:

(f̃ , β̃) = (f, β) ⇐⇒ ∀j′, E
j′
[ξj′t(f̃ , β̃)|zj′t] = 0 a.s..

Given the random permutation j → j′, which is market dependent, we must redefine our matrices

and vectors as follows: x̂t = Mtxt with (Mt)i,k = 1{i = jt, k = j′t}. Likewise ŝt = Mtst. Mt is a

random matrix. It is straight forward to show the direct implication.

(f̃ , β̃) = (f, β) =⇒ ∀j′, E
j′

[
ρ−1
j′ (ŝt, x̂2t, f̃)− x′

1j′tβ̃

∣∣∣∣zj′t] = E
j′
[ξj′t(f, β)|zj′t] = 0 a.s.

The reverse implication is much more intricate to prove and we will exploit other results in the

literature. We want to show:

(f̃ , β̃) ̸= (f, β) =⇒ ∃j′
∣∣∣∣ E

j′

[
ρ−1
j′ (ŝt, x̂2t, f̃)− x̂′

1jtβ̃

∣∣∣∣zj′t] = 0 a.s. does not hold.

Case 1: First, let us assume that f̃ = f and β̃ ̸= β, then we have:

ρ−1(ŝt, x̂2t, f̃)− x̂1tβ̃ = ρ−1(ŝt, x̂2t, f)− x1tβ︸ ︷︷ ︸
ξ̂t(f,β)

+x̂1t(β − β̃)

By assumption, we have: P (x′
1tx1t dp) > 0. Mt is symmetric, idempotent and full rank. As a

consequence,

P (x̂′
1tx̂1t dp) = P (x′

1tMtx1t dp) = P (x′
1tx1t dp) > 0

Therefore, we have ∀ γ ̸= 0 ∈ RK ,

P (γ′x̂′
1tx̂1tγ > 0) > P (x̂′

1tx̂1t dp) > 0 ⇐⇒ P (∥x̂1tγ∥2 > 0) > 0

⇐⇒ P (x̂1tγ ̸= 0) > 0

Thus, ∃j′ | x′
1j′t(β − β̃) = 0 a.s. does not hold. To conclude, there exists j′ such that:

E
j′
[ρ−1

j′ (ŝt, x̂2t, f)− x′
1j′tβ̃|zj′t] = E

j′
[ξj′t(f, β)|zj′t]︸ ︷︷ ︸

=0

+ E
j′
[x′

1j′t(β − β̃)|zj′t]︸ ︷︷ ︸
= 0 a.s does not hold from the completeness

73



Case 2: Now let us assume that f̃ ̸= f and we want to show that ∀β̃ ∈ Rk, ∃j′ such that:

E
j′

[
ρ−1
j′ (ŝt, x̂2t, f̃)− x′

1j′tβ̃

∣∣∣∣zjt] = 0 a.s. does not hold.

First, let us observe that ∀j′,

E
j′

[
ρ−1
j′ (ŝt, x̂2t, f̃)−x′

1j′tβ̃
∣∣zj′t] = E

j′

[
ξj′t(f, β)

∣∣zj′t]︸ ︷︷ ︸
=0

+E
j′

[
ρ−1
j′ (ŝt, x̂2t, f̃)−ρ−1

j′ (ŝt, x̂2t, f)−x′
1j′t(β̃−β)

∣∣zj′t].
As a consequence, we need to show that ∃j′ such that E

j′

[
ρ−1
j′ (ŝt, x̂2t, f̃) − ρ−1

j′ (ŝt, x̂2t, f) −

x′
1j′t(β̃ − β)

]
= 0 a.s. does not hold. From the completeness condition, a sufficient condition is:

∃j′ such that ρ−1
j′ (ŝt, x̂2t, f̃)− ρ−1

j′ (ŝt, x̂2t, f)− x′
1j′t(β̃ − β) = 0 a.s. does not hold.

Let γ = (β̃ − β). By contradiction, it can be easily be shown that ρ(δ̂t, x̂2t, f) − ρ(δ̂t +

x̂1tγ, x̂2t, f̃) ̸= 0 =⇒ ∃j′ ρ−1
j′ (ŝt, x̂2t, f̃) ̸= ρ−1

j (ŝt, x̂2t, f)+γ′x1j′t. Indeed, assume that ρ(δ̂t, x̂2t, f)−

ρ(δ̂t+x̂1tγ, x̂2t, f̃) ̸= 0 and ∀j′ ρ−1
j′ (ŝt, x̂2t, f̃) = ρ−1

j′ (ŝt, x̂2t, f)+γ′x1j′t. Then, we have: ρ(ρ
−1(ŝt, x̂2t, f̃), x̂2t, f̃) =

ρ(ρ−1(ŝt, x̂2t, f) + x̂1tγ, x̂2t, f̃) = ρ(δ̂t + x̂1tγ, x̂2t, f̃) ̸= ρ(δ̂t, x̂2t, f) = ŝt. Therefore, we have a con-

tradiction.

Hence, the next step is to show that ∀γ, f̃ ̸= f =⇒ ρ(δ̂t, x̂2t, f0)− ρ(δ̂t + x̂1tγ, x̂2t, f) = 0 a.s.

does not hold.

To this end, we are going to exploit the identification result shown by Wang (2022). Following

the notations in this paper, we define µi = x̂1tΓ + x̂2tvi = x̂tv with vi = (Γ, vi). Here Γ is a

degenerate random variable characterized by constant c such that P (Γ = c) = 1. Let Gµ|x̂t the

distribution of µi|x̂t under f
† = (c = 0, f) and Gµ̃|x̂t the distribution of µi|x̂t under f̃

† = (c = γ, f̃).

The following result is shown in Wang (2022): for any ˆ̄xt ∈ Supp(x̂t),

∃j′ | ρj′(δ̂t, Gµ|ˆ̄xt
)− ρj′(δ̂t, Gµ̃|ˆ̄xt

) = 0 on open set D ⊂ RJ =⇒ Gµ|ˆ̄xt
= Gµ̃|ˆ̄xt

.

Thanks to the real analytic property of the demand functions ρ, Wang (2022) does not require a

full support assumption on δ̂t.
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Fix the value of x̂t as follows: x̂t = M̄tx̄t = ˆ̄xt.By assumption, there exists x̄t ∈ Supp(xt)

such that x̄′
tx̄t is dp and δt = x̄1tβ + ξt varies on an open set D̄ almost surely.These properties

naturally transmit to ˆ̄xtNow. The chosen permutation M̄t doesn’t matter. Given the result in

Wang (2022), in order to prove that ρ(δ̂t, x̂2t, f0) − ρ(δ̂t + x̂1tγ, x̂2t, f) = 0 a.s. does not hold, we

just need to prove that ∀γ, f̃ ̸= f =⇒ Gµ̃|ˆ̄xt
̸= Gµ|ˆ̄xt

. By definition (see assumption A (iv)),

f̃ ̸= f =⇒ ∃v∗ ∈ RK2 F̃ (v∗) ̸= F (v∗). Take x∗ = (0K1 , ˆ̄x2tv
∗)′ = ˆ̄xt(0K1 , v

∗)′:

Gµ|ˆ̄xt
(x∗) = P (xtvi ≤ x∗|xt = ˆ̄xt) = P ((x′

txt)
−1x′

txtvi ≤ (x′
txt)

−1x′
tx̄t(0K1 , v

∗)′|xt = ˆ̄xt).

= (1K1 , P (vi ≤ v∗|xt = ˆ̄xt))
′ = (1K1 , F (v∗))′

The last equality comes from independence of vi and xt. Likewise, Gµ̃|ˆ̄xt
(x∗) = (1{γ > 0}, F̃ (v∗))′

Therefore, ∃x∗, ∀γ Gµ̃|ˆ̄xt
(x∗) ̸= Gµ|ˆ̄xt

(x∗). Following the result in Wang (2022), we have that

for all γ ∈ RK1 , ρ(δ̂t, x̂2t, f) − ρ(δ̂t + x̂1tγ, x̂2t, f̃) = 0 a.s. does not hold, which in turn implies

that for all γ ∈ RK1 , ∃j′ ρ−1
j (ŝt, x̂2t, f̃)− ρ−1

j (ŝt, x̂2t, f) + x̂′
1jtγ = 0 a.s. does not hold.

To conclude: ∀β ∈ Rk, there exists j′ such that:

ρ−1
j′ (ŝt, x̂2t, f̃)− ρ−1

j′ (ŝt, x̂2t, f)− x′
1j′t(β̃ − β) = 0 a.s. does not hold,

which is what we wanted to show.

In Section 5, we used the following equivalence between the composite hypothesis and the

pseudo-true value to construct the specification test.

Corollary 2.1. Under Assumption A, and assume hE(zjt) and W are such that the pseudo-true

value θ0 is unique, then we have:

H0 : f ∈ F0 ⇐⇒ H0 : (f, β) = (f0(·|λ0), β0).

Proof. Proof of Corollary 2.1

Let us assume that under specification F0, instruments hE(zjt) and weighting matrix W , the

pseudo true value is unique.
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• Under H0 : f ∈ F0 and there exists λ such that f = f0(·|λ). By the mean independence

assumption on the unobserved quality ξjt, we have at the true θ = (β, λ):

ξjt(f0(.|λ), β) = ρ−1
j (st, x2t, f0(.|λ))− x′

1jtβ = ξjt =⇒ E[
(
ξjt(f0(.|λ), β)hE(zjt)] = 0.

Thus, θ is solution to the previous minimization problem and as the solution is unique:

θ0 = θ. As a consequence, ξjt(f0(.|λ0), β0)) = ξjt and E[ξjt(f0(.|λ0), β0)|zjt] = 0 a.s..

• Under an alternative specification: f /∈ F0, we know from the Proposition 1 that ∀θ̃ = (β̃, λ̃),

E
[
ρ−1
j (st, x2t, f0(.|λ̃))− x′

1jtβ̃

∣∣∣∣zjt] = 0 a.s. does not hold.

In particular, the last equation doesn’t hold at the true value θ̃ = θ0.

B.2 Detecting misspecification: the most powerful instrument

Proof of Proposition 2.

• UnderH0 : (f, β) = (f0, β0). By assumption, the data are i.i.d. across markets, E[∥ξjt(f0, β0)hD(zjt)∥2] =
1
J
E[
∑

j∥ξjt(f0, β0)hD(zjt)∥2] < +∞, the CLT applies:

1√
TJ

∑
j,t

hD(zjt)ξjt(f0, β0) =
1√
TJ

∑
j,t

hD(zjt)ξjt −→
T→+∞

N (0, Ω̃0),

with:

Ω̃0 = E

[(
1√
J

J∑
j=1

hD(zjt)ξjt

)(
1√
J

J∑
j=1

hD(zjt)ξjt

)′]

=
1

J
E

[
J∑

j=1

hD(zjt)hD(zjt)
′ξ2jt +

J∑
j=1

∑
k ̸=j

hD(zjt)hD(zkt)
′ξjtξkt

]

=
1

J
E

[
J∑

j=1

hD(zjt)hD(zjt)
′ξ2jt

]
+

1

J

J∑
j=1

∑
k ̸=j

E

hD(zjt)hD(zkt)
′ E[ξjtξkt|zjt, zkt]︸ ︷︷ ︸

=0


= E

[
hD(zjt)hD(zjt)

′ξ2jt
]

= Ω0.
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Third line comes from ξjt ⊥⊥ ξkt|zt. By assumption, Ω0 has a full rank. Thus, we have by

the CMT:

ST (hD, f0, β0) = TJ

(
1

TJ

∑
j,t

ξjt(f0, β0)hD(zjt)

)′

Ω̂−1
0

(
1

TJ

∑
j,t

ξjt(f0, β0)hD(zjt)

)
d−→

T→+∞
χ2
|hD|0 .

• Under H ′
a : E [hD(zjt)ξjt(f0, β0)] ̸= 0. The data are i.i.d. across markets, by the law of

large numbers: 1
TJ

∑
j,t hD(zjt)ξjt(f0, β0)

P→ E
[
1
J

∑
j hD(zjt)ξjt(f0, β0)

]
. It follows by the

continuous mapping theorem:

ST (hD, f0, β0)

T

P→JE

[
1

J

∑
j

hD(zjt)ξjt(f0, β0)

]′
Ω−1

0 E

[
1

J

∑
j

hD(zjt)ξjt(f0, β0)

]
= J E [hD(zjt)ξjt(f0, β0)]

′ Ω−1
0 E [hD(zjt)ξjt(f0, β0)]︸ ︷︷ ︸

κ(hD,f0,β0)

Under H ′
a, κ(hD, f0, β0) is strictly positive because Ω0 is positive definite. Thence,

∀q ∈ R, lim
T→∞

P(ST (hD, f0, β0) > q) = lim
T→∞

P
(
S(hD, f0, β0)− q

T
> 0

)
= P(Jκ(hD, f0, β0) > 0)

= 1,

where the second equality holds because convergence in probability implies convergence in distri-

bution.

Proof of Proposition 3. To shorten notations, let ξjt0 ≡ ξjt(f0(·|λ0), β0), ξjta ≡ ξjt(fa, βa) and ξt0
and ξta their stacked versions over j. Likewise, we define hD(zt) = (hD(z1t), ..., hD(zJt))

′. Under

Ha : (f, β) = (fa, βa), the asymptotic slope of the test writes:

chD
(fa, βa) = E

∑
j

ξjt0hD(zjt)

′

E

∑
j

ξjt0hD(zjt)

∑
j′

ξj′t0hD(zj′t)

′−1

E

∑
j

ξjt0hD(zjt)


= E(ξ′t0hD(zt))E(hD(zt)′ξt0ξ′t0hD(zt))−1E(hD(zt)′ξt0)

= E(∆ξt
0,a

′
hD(zt))E(hD(zt)′E(ξt0ξ′t0|zt)hD(zt))−1E(hD(zt)′∆ξt

0,a).
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Third line comes from E(∆ξt
0,a

′
hD(zt)) = E((ξt0 − ξta)

′hD(zt)) = E(ξ′t0hD(zt)) because ξta is the

true structural error. Then the slope of the test taking h∗
D(zt) = E(ξt0ξ′t0|zt)−1E(∆ξt

0,a|zt) is equal
to:

ch∗
D
(fa, βa) = E

(
E(∆ξt

0,a|zt)
′E(ξt0ξ′t0|zt)−1E(∆ξt

0,a|zt)
)

To finish the proof, we must show that for any set of instruments hD, we have: ch∗
D
(fa, βa) ≥

chD
(fa, βa).

Denote h̃D(zt) = E(ξt0ξ′t0|zt)1/2hD(zt) and h̃∗
D(zt) = E(ξt0ξ′t0|zt)1/2h∗

D(zt).With these new nota-

tions, we have:

ch∗
D
(fa, βa)− chD

(fa, βa) = E
(
h̃∗D(zt)

′h̃∗D(zt)
)
− E

(
h̃∗D(zt)

′h̃D(zt)
)
E
(
h̃D(zt)

′h̃D(zt)
)−1

E
(
h̃D(zt)

′h∗D(zt)
)

= G′

E
(
h̃∗D(zt)

′h̃∗D(zt)
)

E
(
h̃∗D(zt)

′h̃D(zt)
)

E
(
h̃D(zt)

′h̃∗D(zt)
)

E
(
h̃D(zt)

′h̃D(zt)
)
G

= G′E
(
H̃H̃ ′

)
G ≥ 0,

with H̃ = (h̃∗
D(zt), h̃D(zt))

′ and G =

(
1,−E

(
h̃∗
D(zt)

′h̃D(zt)
)
E
(
h̃D(zt)

′h̃D(zt)
)−1
)′

.

Special case: when we assume for k ̸= j, ξjt ⊥⊥ ξkt|zt, and take Ω̂0 =
1
JT

∑
j,t ξ

2
jt0hD(zjt)hD(zjt)

′

as our weighting matrix (as we do for illustrations purposes in the main text), we find that the

slope under Ha writes:

chD
(fa, βa) = E(∆ξjt

0,ahD(zjt))
′E(hD(zjt)hD(zjt)

′E(ξ2jt0|zjt))−1E(hD(zjt)∆
ξjt
0,a).

Using the same arguments as previously, one can show that a maximizer of the slope of the

test is obtained by taking h∗
D(zjt) = E(ξ2jt|zjt)−1E(∆ξjt

0,a|zjt).

Proof of Proposition 4.

78



Under Assumption A, Proposition 1 implies the following:

Ha : (f, β) = (fa, βa) ̸= (f0, β0) =⇒ E[ξjt(f0, β0)|zjt] ̸= 0 a.s.

=⇒ E[ξjt(f0, β0)|zjt]2 > 0 a.s.

=⇒ E
[
E[ξjt(f0, β0)|zjt]2

]
> 0

=⇒ E
[
E[ξjt(f0, β0)E[ξjt(f0|zjt]|zjt]

]
> 0

=⇒ E
[
ξjt(f0, β0)E[ξjt(f0|zjt]

]
> 0

=⇒ H ′
a : E

[
ξjt(f0, β0)E[∆

ξjt
0,a|zjt]︸ ︷︷ ︸

h∗
D(zjt)

]
̸= 0.

Under the same assumptions as 2, we have the following:

H ′
a : E

[
ξjt(f0, β0)h

∗
D(zjt)

]
̸= 0 =⇒ ∀q ∈ R+, P(ST (h

∗
D,F0, θ̂) > q) → 1.

Proof of Proposition 5.

Let H the set of measurable functions of zjt, we want to show under H̄a:

∀α ∈ R∗, αE[∆ξjt
0,a|zjt] ∈ argmax

h∈H
corr(ξjt(f0, β0), h(zjt)).

We proceed in 2 steps. First, we derive the upper bound by showing that for any h ∈ H, we

have:

corr (ξjt(f0, β0), h(zjt)) ≤

√√√√var
(
E[∆ξjt

0,a|zjt]
)

var(ξjt(f0, β0))
.

To do so, we use the definition of the conditional expectation and the Cauchy Schwarz in-

equality. First notice that we have: E[∆ξjt
0,a|zjt] = E[ξjt(f0, β0)|zjt]. By definition of the conditional

expectation, we have for any h ∈ H,

E[h(zjt)ξjt(f0, β0)] = E[h(zjt)E[ξjt(f0, β0)|zjt]].

It follows that:

|cov (h(zjt), ξjt(f0, β0))| = cov (h(zjt),E[ξjt(f0, β0)|zjt]) ≤
√

var(h(zjt))var (E[ξjt(f0, β0)|zjt]).
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The inequality comes from the Cauchy Schwarz inequality. The result follows by using the defini-

tion of the correlation coefficient.

Second, we show that the upper bound is reached by taking for any α ∈ R∗, h∗
D(zjt) =

αE[∆ξjt
0,a|zjt].

cov
(
ξjt(f0, β0), αE[∆

ξjt
0,a|zjt]

)
= α cov

(
∆

ξjt
0,a,E[∆

ξjt
0,a|zjt]

)
= α var

(
E[∆ξjt

0,a|zjt]
)
.

Consequently,

corr (ξjt(f0, β0), h
∗
D(zjt)) =

α√
α2

√√√√var
(
E[∆ξjt

0,a|zjt]
)

var(ξjt(f0, β0))
=⇒ |corr (ξjt(f0, β0), h∗D(zjt))| =

√√√√var
(
E[∆ξjt

0,a|zjt]
)

var(ξjt(f0, β0))
.

B.2.1 Connection with optimal instruments

In the parametric case and assuming that the model is well specified (f ∈ F0) the BLP parameter

θ0 is identified by the following non-linear conditional moment restriction E[ξjt(θ0)|zjt] = 0. The

derivation of the optimal instruments in this context has been studied by Amemiya (1974). For

an arbitrary choice of hE(zjt), the GMM estimator with the 2-step efficient weighting matrix has

the following asymptotic distribution:

√
T (θ̂ − θ0)

d→ N
(
0, (Γ(F0, θ, hE)

′Ω(F0, hE)
−1Γ(F0, θ, hE))

−1
)
,

with the same notations as previously:

Ω(F0, hE) = E
[(∑

j

ξjt(θ)hE(zjt)

)(∑
j

hE(zjt)ξjt(θ)

)′]

Γ(F0, θ0, hE) = E

∑
j

hE(zjt)
∂ξjt(θ0)

∂θ̃′

 .

For the sake of exposition, we will assume that unobserved demand shock ξjt is independent

across observations, namely: E [ξjt(θ0)ξj′t(θ)|zt] = 0 for j ̸= j′. The general case extends naturally.

The optimal instrument h∗
E(zjt) are chosen to minimize the asymptotic variance covariance matrix.
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We derive the form of the optimal instruments in the context of BLP by applying well known results

in Chamberlain (1987) and Amemiya (1974)

Lemma 2.2. Optimal instruments in the BLP model.

In our setting and assuming f ∈ F0, the optimal instruments h∗
E(zjt) write:

h∗
E(zjt) = E[ξjt(θ0)2|zjt]−1E

[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt] .
and the corresponding efficiency bound (obtained by setting hE = h∗

E) writes:

V ∗ = E
[∑

j

E
[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt]E [∂ξjt(θ0)∂θ̃

∣∣∣∣zjt]′ E[ξjt(θ)2|zjt]−1

]−1

Proof. To shorten the notations, we denote: σ2(zjt) = E[ξjt(θ0)2|zjt] and d(zjt) = E
[
∂ξjt(θ0)

∂θ̃

∣∣∣∣zjt].
Likewise, we define:

Ω0(hE) = E
[∑

j

E[ξjt(θ0)2|zjt]hE(zjt)hE(zjt)
′
]
.

We want to prove that for any set of instruments hE(zjt) that V
∗(zjt) − Γ0(hE)

′Ω0(hE)
−1Γ0(hE)

matrix is semi definite positive.

V ∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE)

′ =

= E
[∑

j

d(zjt)d(zjt)
′σ2(zjt)

]
− E

∑
j

∂ξjt(θ0)

∂θ̃
hE(zjt)

′

Ω0(hE)
−1E

∑
j

hE(zjt)∂ξjt(θ0)

∂θ̃

′


= E
[∑

j

d(zjt)d(zjt)
′σ−2(zjt)

]
− E

∑
j

d(zjt)hE(zjt)
′

E
[∑

j

σ2(zjt)hE(zjt)hE(zjt)
′
]
E

∑
j

hE(zjt)d(zjt)
′


= E

[
D̃(zjt)

′D̃(zjt)

]
− E

[
D̃(zjt)

′H̃E(zjt)

]
E
[
H̃E(zjt)

′H̃E(zjt)

]−1

E
[
H̃E(zjt)

′D̃(zjt)
]
.

The second line comes from law of iterated expectations. The third line is a matricial way to

rewrite the second line. D̃(zjt) a matrix which stacks d(zjt)/σ(zjt) over the set of products (each

line corresponds to one product j). Likewise, let H̃E(zjt) a matrix which stacks hE(zjt)σ(zjt) over
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the set of products (each line corresponds to one product j). Now let us define the following

matrices.

X̃ =

(
D̃(zjt) H̃E(zjt)

)
and M̃ =

(
I|θ0| −E

[
D̃(zjt)

′H̃E(zjt)

]
E
[
H̃E(zjt)

′H̃E(zjt)

]−1)′

We have: V ∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE) = M̃ ′E[X̃ ′X̃]M̃ .

The matrix above is clearly semi definite positive.

B.3 Feasible most powerful instrument

B.3.1 Local approximation of the MPI

Proof of Proposition 6. First, we define s0t = ρ(δt, x2t, f0(.|λ0)) with δt the true mean utility. From

lemma 2.4 ρ−1 is C∞ and in particular, ρ−1 is C1. Thus, the Taylor expansion of ρ−1(s0t , x2t, f0(.|λ0))

around st writes:

ρ−1(s0t , x2t, f0(.|λ0)) = ρ−1(st, x2t, f0(.|λ0)) +
∂ρ−1(st, x2t, f0(.|λ0))

∂s

∣∣∣∣
s=st

(s0t − st) + o
(
||s0t − st||

)
δt = ρ−1(st, x2t, f0(.|λ0)) +

∂ρ−1(st, x2t, f0(.|λ0))

∂s

∣∣∣∣
s=st

(s0t − st) + o
(
||s0t − st||

)
We now derive an expression for the first derivative of the inverse function. We make use of

lemma 2.5: for any δ ∈ RJ , ∂ρ(δ,x2t,f)
∂δ

is invertible.

∂ρ(ρ−1(st, x2t, f0(.|λ0)), x2t, f0(.|λ0))

∂s
= IJ ⇐⇒ ∂ρ−1(st, x2t, f0(.|λ0))

∂s

(
∂ρ(ρ−1(st, x2t, f0(.|λ0)), x2t, f0(.|λ0))

∂ρ−1(st, x2t, f0(.|λ0))

)
= IJ

⇐⇒ ∂ρ−1(st, x2t, f0(.|λ0))

∂s
=

(
∂ρ(δ0t , x2t, f0(.|λ0))

∂δ

)−1

with δ0t = ρ−1(st, x2t, f0(.|λ0)).Consequently,

ρ−1(st, x2t, f0(.|λ0))− δt︸ ︷︷ ︸
∆(st,x2t,f0,fa)

= −
(
∂ρ(δ0t , x2t, f0(.|λ0))

∂δ

)−1

(s0t − st) + o
(
||s0t − st||

)
(16)

82



with δ0t = ρ−1
j (st, x2t, f0(.|λ0))

Now let us show that there exists a constant M such that ||s0t − st|| ≤ Mτ(f0(.|λ0)− fa). with

τ(f0−fa) =
∫
RK2

|f0(v|λ0)−fa(v)|dv. Norms are equivalent in a finite vectorial space and without

loss of generality, we will derive the results with the L1 norm. By definition:

s0t − st =

∫
RK2

exp{δt + x2tv}
1 +

∑J
k=1 exp

{
δkt + x′

2jkv
}(f0(v|λ0)− fa(v))dv

Taking the L1 norm of this vector:

||s0t − st||1 =
J∑

j=1

∣∣∣∣ ∫
RK2

exp{δjt + x2jtv)

1 +
∑J

k=1 exp
{
δkt + x′

2jkv
}(f0(v|λ0)− fa(v))dv

∣∣∣∣
≤

J∑
j=1

∫
RK2

∣∣∣∣ exp{δjt + x2jtv)

1 +
∑J

k=1 exp
{
δkt + x′

2jkv
}∣∣∣∣︸ ︷︷ ︸

≤1

|f0(v|λ0)− fa(v)|dv.

≤ J

∫
RK2

|f0(v|λ0)− fa(v)|dv = Jτ(f0(.|λ0)− fa).

This proves the statement. As a consequence, we have: ||s0t − st||1 = O(τ(f0(.|λ0) − fa)) and

o(||s0t − st||) = o(τ(f0(.|λ0)− fa)) .

The problem with the term s0t − st is that it is an expression of δt which we do not know under

misspecification. As we want to be able to compute this approximation of the error term, it is not

convenient in practice to have an expression which depends on δt. On the other hand, we know δ0t

and thus, the simple idea that we exploit is to take a Taylor expansion of the term above around

δ0t . First, let us remark that from equation 16, we have that:

||δt − δ0t || = ||δt − ρ−1(st, x2t, f0(.|λ0)|| = O(||s0t − st||) = O(τ(f0(.|λ0)− fa)).

Now let us take the Taylor expansion of s0t − st around δ0t :
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s0t − st =

∫
RK2

exp{δ0t + x2tv}

1 +
∑J

k=1 exp
{
δ̃kt + x′

2jkv
}(f0(v|λ0)− fa(v))dv

+

∫
RK2

∂

∂δ′

{
exp{δ0t + x2tv}

1 +
∑J

k=1 exp
{
δ0kt + x′

2jkv
}}(δt − δ0t )(f0(v|λ0)− fa(v))dv︸ ︷︷ ︸

B

+ o
(
||δt − δ0t ||

)
.

From what precedes, we know that o(||δt − δ0t ||) = o(τ(f0(.|λ0)− fa)). Now, let us show that

term B in the previous expansion is also o(τ(f0(.|λ0)− fa)). Again taking the L1 norm:

||B||1 =
J∑

j=1

∣∣∣∣ J∑
l=1

∫
RK2

∂

∂δl

{
exp{δ0jt + x′

2jtv}

1 +
∑J

k=1 exp
{
δ̃kt + x′

2jkv
}}(δlt − δ0lt)(f0(v|λ0)− fa(v))dv

∣∣∣∣
≤

J∑
j=1

J∑
l=1

∫
RK2

∣∣∣∣ ∂∂δl
{

exp{δ0jt + x′
2jtv}

1 +
∑J

k=1 exp
{
δ0kt + x′

2jkv
}}∣∣∣∣︸ ︷︷ ︸

≤1

|δlt − δ̃lt||f0(v|λ0)− fa(v)|dv

≤ J2τ(f0(.|λ0)− f)O(τ(f0(.|λ0)− fa)) = O(τ(f0(.|λ0)− fa)
2) = o(τ(f0(.|λ0)− fa)) .

Thus, ||B||1 = o(τ(f0(.|λ0)− fa)) and by combining all the results together, we get the final

result. When f0(.|λ0) gets ‘’close “ to fa, we have the following approximation:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0t , x2t, f0(.|λ0))

∂δ

)−1 ∫
RK2

exp{δ0t + x2tv}
1 +

∑J
k=1 exp

{
δ0kt + x′

2jkv
}(fa(v)− f0(v|λ0))dv

+ o(τ(fa − f0(.|λ0))) ,

with δ0t = ρ−1(st, x2t, f0(.|λ0)) and τ(fa − f0(.|λ0)) =
∫
RK2

|fa(v)− f0(.|λ0)(v)|dv .

B.3.2 Global approximation of the MPI

Lemma 2.3. Analytical expression for ∆j(st, x2t, f0, fa). Let δ0jt = ρ−1
j (st, x2t, f0) and δajt =

ρ−1
j (st, x2t, fa). We have the following:

∆j(st, x2t, f0, fa) = log


∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δakt+x′
2ktv}

fa(v)dv∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ0jt+x′
2ktv}

f0(v)dv

 .
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Proof of Lemma 2.3.

1 =
ρ(δjt, x2t, fa)

ρ(δ0jt, x2t, f0)
⇐⇒ 1 =

∫
RK2

exp{δjt+x′
2jtv}

1+
∑J

k=1 exp{δakt+x′
2ktv}

fa(v)dv∫
RK2

exp{δ0jt+x′
2jtv}

1+
∑J

k=1 exp{δ0kt+x′
2ktv}

f0(v)dv

⇐⇒
exp{δ0jt)
exp{δajt)

=

∫
RK2

exp{x2tv}
1+

∑J
k=1 exp{δakt+x′

2ktv}
fa(v)dv∫

RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ0jt+x′
2ktv}

f0(v)dv

⇐⇒ ∆j(st, x2t, f0, fa) = log


∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δakt+x′
2ktv}

fa(v)dv∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ0jt+x′
2ktv}

f0(v)dv

 .

B.3.3 Approximation of the MPI in the mixed logit case

Proof of Proposition 7. By definition, we have:

gj(xi, ·, f) : RK1 → [0, 1]

β̃ 7→
∫
RK2

exp
{
x′
ij1β̃ + x′

2ijv
}

1 +
∑J

k=1 exp
{
x′
ik1β̃ + x′

2ikv
}f(v)dv

g is C∞ on RK1 . Thus, we can take a first order Taylor expansion of gj(xi, ., fa) around β0:

gj(xi, βa, fa) = gj(xi, β0, f0) +
∂g(xi, β̃, f0)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o(||βa − β0||)

This yields immediately,

g(xi, β0, f0)− g(xi, βa, fa) =

∫
RK2

exp{x′
1ijβ0 + x′

2ijv}
1 +

∑J
k=1 exp {x′

1ikβ0 + x′
2ikv}

(f0(v)− fa(v))dv+

∂g(xi, β̃, fa)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o(||βa − β0||)

Finally, we need to show ||βa − β0|| = o
(∫

RK2
|f0(v)− fa(v)|dv

)
. From Assumption 1 by

definition of β∗
0 and β∗

a, we have f0 = fa ⇒ β∗
0 = β∗

a. Going further it can be shown using

the Kullback divergence that for any e1 > 0 such that
∫
RK2

|f0(v) − fa(v)|dv < e1 there exists
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some e2 > 0 such that ||β∗
0 − β∗

a|| < e2. In other words if
∫
RK2

|f0(v) − fa(v)|dv is small then

||β∗
a − β∗

0 || is also small, thus any small o of ||βa − β0|| = ||β∗
a − β∗

0 || can be replaced by a small o

of
∫
RK2

|f0(v)− fa(v)|dv even if the two quantities are not proportional. Consequently

g(xi, β0, f0)− g(xi, βa, fa) =

∫
RK2

exp{x′
1ijβ0 + x′

2ijv}
1 +

∑J
k=1 exp {x′

1ikβ0 + x′
2ikv}

(f0(v)− fa(v))dv+

∂g(xi, β̃, fa)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o

(∫
RK2

|f0(v)− fa(v)|dv
)

B.4 Specification Test: composite hypothesis

In this section, we prove theorem 5.1, which is the main asymptotic result of the paper. The

section is organized as follows. First, we establish the equivalence between the moment condition

around which we build our test E
[∑

jt ξjt(f0(·|λ0), β0)hD(zjt)
]
= 0 and the one characterizing

H ′
0 : E [ξjt(f0(·|λ0), β0)hD(zjt)] = 0. Then, we introduce the notations used in the proofs and we

decompose ξ̂ according to the BLP approximations. Second we provide technical lemmas which

prove that under the assumptions in E, the BLP approximations vanish asymptotically. Third,

we prove that the BLP estimator is consistent and asymptotically normal. Finally, we prove the

main theorem and we show that under the null the test is pivotal in the 2 polar cases described

in the main text.

B.4.1 Equivalence between moment conditions

Let hD(zjt) our detection instruments. For conciseness, we omit the dependence in f0 and de-

note ξjt(f0(·|λ0), β0) = ξjt(θ0). We want to prove that the following two moment conditions are

equivalent:

E [ξjt(θ0)hD(zjt)] = 0 ⇐⇒ E

[
J∑

j=1

ξjt(θ0)hD(zjt)

]
= 0

Let Rt a categorial random variable which exogenously selects a product j with probability 1
J
.

Formally, we have (ξjt(θ0), zjt) ⊥⊥ Rjt. By construction, we have:
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E [ξjt(θ0)hD(zjt)] =
J∑

k=1

E [ξkt(θ0)hD(zkt)Rkt] =
J∑

k=1

E [ξkt(θ0)hD(zkt)]E[Rkt]

=
1

J
E

[
J∑

k=1

ξkt(θ0)hD(zkt)

]
Second line results from independence of (ξjt(θ0), zjt) and Rjt. This proves the result.

B.4.2 Notations

In the proofs, we will adopt the following notations. If the derivations are done under the para-

metric assumption H0 : f ∈ F0 then we omit the dependence in f0 and interchangeably use

ξjt(f0(.|λ), β) and ξjt(θ). We also omit the dependence of the BLP pseudo true value in W and

hE(zjt)
37. Then define the following objectives of the GMM minimization

Q̂T (θ̃) =

(
1

T

∑
j,t

ξ̂jt(θ̃)hE(zjt)

)′

Ŵ

(
1

T

∑
j,t

ξ̂jt(θ̃)hE(zjt)

)

QT (θ̃) =

(
1

T

∑
j,t

ξjt(θ̃)hE(zjt)

)′

Ŵ

(
1

T

∑
j,t

ξjt(θ̃)hE(zjt)

)

Q(θ̃) = E

[∑
j

ξjt(θ̃)hE(zjt)

]′
WE

[∑
j

ξjt(θ̃)hE(zjt)

]
We also define the following moments

ĝT (θ̃, h) =
1

T

∑
jt

ξ̂jt(θ̃)h(zjt)

gT (θ̃, h) =
1

T

∑
jt

ξjt(θ̃)h(zjt)

g(θ̃, h) = E

[∑
j

ξjt(θ̃)h(zjt)

]

And recall the definition of Γ(F0, θ̃, h) which is used interchangeably with Γ(θ̃, h)

Γ̂T (θ̃, h) =
1

T

∑
j,t

h(zjt)
∂

∂θ
ξ̂jt(θ̃)

′

37The BLP pseudo true value depends on W and hE(zjt) when the model is misspecified
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ΓT (θ̃, h) =
1

T

∑
j,t

h(zjt)
∂

∂θ
ξjt(θ̃)

′

Γ(θ̃, h) = E

[∑
j

h(zjt)
∂

∂θ
ξjt(θ̃)

′

]

Furthermore, unless specified, all limits are taken with respect to T ; Additionally, we denote by

the expression X = oP (T
κ) a random variable or statistic which is asymptotically degenerate

of order T a, ie X = oP (T
κ) ⇔ ∀e > 0 P(|X|T−κ > e) →

T→∞
0, and denote by X = Op(T

κ) a

random variable which is (bounded in probability) of order T κ, ie ∀e1 > 0∃e2 > 0,∃TN : ∀T ⩾

TN P(|X|T−κ > e2) < e1. Properties of oP (1) and OP (1) random variables are used throughout

these proofs.

B.4.3 Feasible Structural Error and BLP approximations

We now decompose the difference between the true structural error ξjt(θ̃) and the feasible struc-

tural error ξ̂jt(θ̃) in terms of the different approximations involved in the derivation of the fea-

sible structural error ξ̂jt(θ̃). In market t given an assumption F0, a parameter λ̃, market shares

st and product characteristics with preference heterogeneity x2t there exists a unique δt ∈ RJ

such that st = ρ(δt, x2t, f0(·|λ̃)) (Brouwer’s fixed point theorem, see Berry (1994)) so that δt =

ρ−1(st, x2t, f0(·|λ̃)). There is no closed form for ρ−1(st, x2t, f0(·|λ̃)) so the NFP algorithm is used.

Denote as C the contraction used to find the mean utilities which solve the demand equal market

share constraint

C(·, st, x2t, f0(·|λ̃)) : δ ∈ RJ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃)))

So that for some starting mean utility δ0 ∈ B ⊂ RJ where B is bounded, the mean utility obtained

via NFP at the limit is equal to the unique vector which solves the constraint

δt(f0(·|λ̃)) = ρ−1(st, x2t, f0(·|λ̃)) = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))

Similarly the error generated by (f0(·|λ̃, β̃)) can be obtained from NFP at the limit

ξt(f0(·|λ̃), β̃) = δt(f0(·|λ̃))− x1tβ̃ = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))− x1tβ̃
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This way we obtain a vector of mean utilities for each market t. There are 3 approximations to

consider, market shares are not truly observed, the demand integral has to be simulated, and the

contraction is never taken to its limit, so define ξ̂(f0, λ̃)) δ̂(f0, λ̃)) and Ĉ for some starting value

δ0

ξ̂t(f0(·|λ̃), β̃) = Ĉ(H)(δ0, ŝt, x2t, f0(·|λ̃))− x1jtβ̃, δ̂(f0, λ̃)) = Ĉ(H)(δ0, ŝt, x2t, f0, λ̃))

Ĉ : δ 7→ δ + log(ŝt)− log(ρ̂(δ, x2t, f0(·|λ0)))

Consequently we decompose the difference between the error generated by (f0(·|λ̃), β̃) and its

feasible approximation into 3 differences

ξjt(f0(·|λ̃), β̃)− ξ̂jt(f0(·|λ̃), β̃) = δjt(f0(·|λ̃))− δ̂jt(f0(·|λ̃))

= lim
H→∞

C
(H)
j (δ0, st, x2t, f0(·|λ̃)))− Ĉ

(H)
j (δ0, ŝt, x2t, f0(·|λ̃))

= lim
H→∞

C
(H)
j (δ0, st, x2t, f0(·|λ̃)))− C

(H)
j (δ0, st, x2t, f0(·|λ̃))

+ C
(H)
j (δ0, st, x2t, f0(·|λ̃)))− C

(H)
j (δ0, ŝt, x2t, f0(·|λ̃))

+ C
(H)
j (δ0, ŝt, x2t, f0(·|λ̃))− Ĉ

(H)
j (δ0, ŝt, x2t, f0(·|λ̃))

≡ ρ−1
j (st, x2t, f0(·|λ̃))−Dj(ρ, st, λ̃)

+Dj(ρ, st, λ̃)−Dj(ρ, ŝt, θ̃)

+Dj(ρ, ŝt, θ̃)−Dj(ρ̂, ŝt, θ̃)

In the fourth line, we simply introduce shortened notations for the same objects.

B.4.4 Technical Lemmas

The 1st and 2nd lemma establish the smoothness of ρ−1 and the invertibility of the Jacobian matrix

of ρ with respect to δ. In the 3rd lemma, we derive the Lipschitz constant of the contraction and

we prove that it is bounded away from 0 and 1. The 4th lemma ensures that for key moments

and quantities the BLP approximations can be ignored uniformly asymptotically.

Lemma 2.4. ρ−1 is C∞

Proof. We know that the demand function ρ is C∞ and invertible on RJ . Moreover,∀δ ∈ RJ ,

∂ρ(δ,x2t,f)
∂δ

̸= 0. As a consequence, ρ−1 : [0, 1]J → RJ the inverse demand function is also C∞.

Lemma 2.5. For any δ ∈ RJ , ∂ρ(δ,x2t,f)
∂δ

is invertible.
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Proof. ∂ρ
∂δ

is a J × J matrix such that
(
∂ρ
∂δ

)
j,k

is:

∂ρj (δt, x2t, f)

∂δkt
=


∫
Tjt(v) (1− Tkt(v)) f(v)dv if j = k

−
∫
Tjt(v)Tkt(v)f(v)dv if j ̸= k

with Tjt(v) ≡
exp{δjt+x′

2jtv}
1+

∑J
j′=1 exp{δj′t+x′

2j′tv}

One can easily check that ∂ρ
∂δ

is strictly diagonally dominant. Indeed for each row j:

∣∣∣∣∂ρj (δt, x2t, f)

∂δkt

∣∣∣∣−∑
k ̸=j

∣∣∣∣∂ρj (δt, x2t, f)

∂δkt

∣∣∣∣ = ∫ Tjt(v)

(
1−

J∑
k=1

Tkt(v))

)
︸ ︷︷ ︸

>0

f(v)dv > 0

Lemma 2.6 (Contraction Mapping Lipschitz Constant).

Given parametric assumption F0, under assumptions B-E, assume that starting mean utility δ0 is

in B where B is compact, then without loss of generality there exists some (a, ā) ∈ R2 with ā > a

such that for any b ∈ B for any j = 1, . . . , J a ⩽ bj ⩽ ā, furthermore denote by X the compact

support of x2jt. Then on B the map C(·, st, x2t, f0(·|λ̃0)) is a contraction with Lipschitz constant

ϵ = max
j=1,...,J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

1−

∫ exp{aj+bj+x′
2jv}

(1+
∑

k exp{ak+bk+x′
2kv})

2f0(v|λ̃)dv∫ exp{aj+bj+x′
2jv}

1+
∑

k exp{ak+bk+x′
2kv}

f0(v|λ̃)dv

which is in (0; 1)

Proof. This proof is inspired by the proof of the Theorem in Appendix 1 of Berry et al. (1995).

Let Cj(·) ≡ C(·, st, x2t, f0(·|λ̃0)), we first determine the partial derivative of Cj(·)

∂Cj(a)

∂aj
= 1− 1

ρj(a, x2t, f0(·|λ̃))

∫
exp{aj + x′2ktv}(1 +

∑J
k=1 exp{ak + x′2ktv})− exp{2(aj + x′2ktv)}

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫
exp{2(aj + x′2jtv)}

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv

∂Cj(a)

∂aj′
=

1

ρj(a, x2t, f0(·|λ̃))

∫
exp{aj + x′2jtv} exp{aj′ + x′2j′tv}
(1 +

∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv
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Note that for any j = 1, . . . , J all partial derivatives of Cj(·) are strictly positive and that the

sum of its derivatives evaluated in a equals

J∑
k=1

∂Cj(a)

∂ak
=

1

ρj(a, x2t, f0(·|λ̃))

∫
exp{aj + x′2jtv}

∑J
k=1 exp{ak + x′2ktv}

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫
exp{aj + x′2jtv}(1 +

∑J
k=1 exp{ak + x′2ktv} − 1)

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv

= 1−

∫ exp{aj+x′
2jtv}

(1+
∑J

k=1 exp{ak+x′
2ktv})2

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))

For any (a1, a2) ∈ B2 let ã = (||a1 − a2||∞, . . . , ||a1 − a2||∞) ∈ RJ then

Cj(a1)− Cj(a2) = Cj(a2 + a1 − a2)− Cj(a2) ⩽ Cj(a2 + ã)− Cj(a2)

⩽
∫ ||a1−a2||J∞

0J

∂Cj(a2 + b)

∂a
db

⩽ ||a1 − a2||∞ sup
a∈B,b∈[0;ā−a]J

J∑
k=1

∂Cj(a+ b)

∂ak

⩽ ||a1 − a2||2 max
j=1,..J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

J∑
k=1

∂Cj(a+ b)

∂ak

≡ ||a1 − a2||2 ϵ

where the 1st inequality holds because Cj(·) is increasing in all its inputs, the 2nd inequality

holds by the fundamental theorem of calculus and by the total derivative formula, the 3rd and 4th

inequalities hold by properties of norms.

We now prove that sup
a∈B,b∈[0;ā−a]J ,λ̃∈Λ0

∑J
k=1

∂Cj(a+b)

∂ak
∈ (0; 1) which will imply that ϵ ∈ (0; 1).

To do so we have to prove that
∑J

k=1
∂Cj(a,st,x2t,f0(·|λ̃))

∂ak
is continuous in (a, x2t, λ̃) and takes values

in (0; 1) almost surely, this way because B, X and Λ0 are compact by Weierstrass’ Extreme Value

Theorem the sum of partial derivatives will also take values in a compact which is inside (0; 1),

then the supremum will become a maximum which can be attained and which is inside (0; 1). The

sum of partial derivatives is almost surely in (0; 1) because

∫
exp{aj + x′2jtv}

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv − ρj(a, x2t, f0(·|λ̃))
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=

∫
exp{aj + x′2jtv}

(1 +
∑J

k=1 exp{ak + x′2ktv})2
f0(v|λ̃)dv −

∫
exp{aj + x′2jtv}

1 +
∑J

k=1 exp{ak + x′2ktv}
f0(v|λ̃)dv

=−
∫

exp{aj + x′2jtv}
∑J

k=1 exp{ak + x′2ktv}
(1 +

∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv < 0

⇒

∫ exp{aj+x′
2jtv}

1+
∑J

k=1 exp{ak+x′
2ktv}

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

⇒
J∑

k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1−

∫ exp{aj+x′
2jtv}

1+
∑J

k=1 exp{ak+x′
2ktv}

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
> 0

⇒−

∫ exp{aj+x′
2jtv}

1+
∑J

k=1 exp{ak+x′
2ktv}

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 0

⇒
J∑

k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1−

∫ exp{aj+x′
2jtv}

1+
∑J

k=1 exp{ak+x′
2ktv}

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

Continuity of the sum of the partial derivatives in (a, x2t) is trivial, continuity in λ̃ also holds

because f0(·|λ̃) must be continuously differentiable via Assumption D. ∀e1 > 0,∃e2 : ∀(λ1, λ2) :

||λ1 − λ2||2 ⩽ e2 implies |f0(v|λ1)− f0(v|λ2)| < e1 for all v which in turn implies

∀x2 ∈ X , ∀a ∈ B

∣∣∣∣∣
∫

exp{aj + x′2jv}
1 +

∑J
k=1 exp{ak + x′2kv}

(f0(v|λ1)− f0(v|λ2))dv

∣∣∣∣∣
⩽
∫

exp{aj + x′2jv}
1 +

∑J
k=1 exp{ak + x′2kv}

|f0(v|λ1)− f0(v|λ2)|dv

⩽e1

Thus both λ̃ 7→ ρj(a, x2t, f0(·|λ̃)) and λ̃ 7→
∫ exp{aj+x′

2jtv

(1+
∑J

k=1 exp{ak+x′
2ktv})2

f0(v|λ̃)dv are continuous and

so is their ratio.

Lemma 2.7 (Uniform Convergence of Objective Function wrt BLP Approximations).

Given parametric assumption F0, under assumptions B-E and ∀h which satisfies D

sup
θ̃∈Θ0

√
T ||ĝT (θ̃, h)− gT (θ̃, h)||2

P→ 0

sup
θ̃∈Θ0

||Γ̂T (θ̃, h)− ΓT (θ̃, h)||2
P→ 0

sup
θ̃∈Θ0

|Q̂T (θ̃)−Q(θ̃)| P→ 0

Proof. Parts of this proof are inspired from Freyberger (2015). We prove the 3 statements of the

Lemma in order
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1. Using the properties of the sup, the fact that ∀(A,B) rv, ∀e > 0, ∀α ∈ (0, 1), P(A + B >

e) ⩽ P(A > αe)+P(B > (1−α)e) and the previous decomposition of the difference between

ξ and ξ̂ we can find an upper bound on the probability that that the difference between ĝT (·)

and gT (·) is above a deviation: For any e1 > 0

P(sup
θ̃

√
T ||ĝT (θ, h)− gT (θ, h)||2 > e1) = P(sup

θ̃

√
T
1

T
||
∑
j,t

(ξ̂t(f0(·|λ̃), β̃)− ξt(f0(·|λ̃), β̃))h(zjt)||2 > e1)

⩽ P(sup
λ̃

√
T || 1

T

∑
j,t

(ρ−1(st, x2t, f0(·|λ̃0))−Dj(ρ, st, λ̃))h(zjt)||2 >
e1
3
)

+ P(sup
λ̃

√
T || 1

T

∑
j,t

(Dj(ρ, st, λ̃)−Dj(ρ, ŝt, λ̃))h(zjt)||2 >
e1
3
)

+ P(sup
λ̃

√
T || 1

T

∑
j,t

(Dj(ρ, ŝt, λ̃)−Dj(ρ̂, ŝt, λ̃))h(zjt)||2 >
e1
3
)

Then we can prove that each element of the upper bound converges to 0

(a) By properties of contractions and using Lemma 2.6 we have

|ρ−1(st, x2t, f0(·|λ̃0))−Dj(ρ, st, λ̃)| ⩽ ϵH |ρ−1(st, x2t, f0(·|λ̃0))− δ0| ⩽ ϵHκ

for some constant κ which exists due to the compactness of Λ0, X and B. Thus using

the iid nature of the data ??(i), the speed of the NFP algorithm Assumption E(iii), the

triangle inequality, Markov inequality and Cauchy-Schwarz inequality the 1st element

converges to 0

P(sup
λ̃

√
T || 1

T

∑
j,t

(ρ−1(st, x2t, f0(·|λ̃0))−Dj(ρ, st, λ̃))h(zjt)||2 >
e1
3
)

⩽ P(
√
TϵHκ|| 1

T

∑
j,t

h(zjt)||2 >
e1
3
) ⩽ P(

√
TϵH

1

T

∑
j,t

||h(zjt)||2 >
e1
3
)

⩽
3κ

e1

√
TϵH

∑
j

√
E(||h(zjt)||22) →

T→∞
0

(b) Note thatDj is continuously differentiable in s ∈ (0; 1) so that it is uniformly continuous

in s. Indeed C is C∞ in s so that

∂D(ρ, st, λ̃)

∂s
=

H∏
h=1

∂C(C(h−1)(δ0, st, x2t, f0(·|λ̃)), st, x2t, f0(·|λ̃))
∂s

Next because Λ0 is compact it can be covered by some finite union of closed balls in

RK2 , ie Λ0 ⊂ ∪N
c=1Λ

N
0,c with ∀c = 1, . . . , N ΛN

0,c = {λ̃ : ||λ̃ − λc||2 ⩽ rN}, λc ∈ Λ0 and

93



rN →
N→∞

0. Consequently

P(sup
λ̃

1√
T
||
∑
j,t

(Dj(ρ, st, λ̃)−Dj(ρ, ŝt, λ̃))hE(zjt)||2 >
e1
3
)

⩽ P( max
c=1,...,N

sup
λ̃∈ΛN

0,c

1√
T
||
∑
j,t

(Dj(ρ, st, θ̃)−Dj(ρ, ŝt, θ̃))hE(zjt)||2 >
e1
3
)

⩽
N∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >
e1
3
)

⩽
N∑
c=1

P(
1√
T
||
∑
j,t

(Dj(ρ, st, λc)−Dj(ρ, ŝt, λc))hE(zjt)||2 >
e1
9
)

+
N∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, st, λc)| ||hE(zjt)||2 >
e1
9
)

+
N∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t

|Dj(ρ, ŝt, λc)−Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >
e1
9
)

where the last inequality was obtained using the triangle inequality. Then by uniform

continuity of Dj in s it follows that ∃e2 > 0 such that ∀c 1√
T
||
∑

j,t(Dj(ρ, st, λc) −

Dj(ρ, ŝt, λc))hE(zjt)||2 > e1
9

implies 1√
T
||
∑

j,t(st − ŝt)||2 > e2 thence letting P∗ =

P(·|nt, xt, ξt)

P∗(
1√
T
||
∑
j,t

(Dj(ρ, st, λc)−Dj(ρ, ŝt, λc))hE(zjt)||2 >
e1
9
) ⩽ P∗(

1√
T
||
∑
j,t

(st − ŝt)||2 > e2)

⩽
J
∑

t E∗(||st − ŝt||2)
e2
√
T

=
J
∑

t E∗
(√∑

j(sjt − ŝjt)2
)

e2
√
T

⩽
J
∑

t

√∑
j E∗ ((sjt − ŝjt)2)

e2
√
T

⩽
J
∑

t

√∑
j E∗

(
( 1
nt

∑nt
i=1 yijt − E∗(yijt))2

)
e2
√
T

=
J
∑

t

√∑
j V ar∗( 1

nt

∑nt
i=1 yijt)

e2
√
T

⩽
J
∑

t

√∑
j

1
nt
V ar∗(yijt)

e2
√
T

⩽
J3/2

e2

1√
T

∑
t

1
√
nt

where Markov inequality, Jensen inequality, the fact that yijt ∈ {0; 1}, that εijt is

iid extreme-value type 1 distributed across i, j and t, and the fact that nt is iid and

independent of all other variables have been used. Then taking the expectations and

summing over N on both sides implies by Assumption E(i)

N∑
c=1

P(
1√
T
||
∑
j,t

(Dj(ρ, st, λc)−Dj(ρ, ŝt, λc))hE(zjt)||2 >
e1
9
) ⩽

J3/2N

e2

√
TE(n−1/2

t ) →
T→∞

0
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Next using continuity of Dj in λ̃ it must be that for any e1 > 0 there exists some N

such that ∀λ̃ ∈ ΛN
0,c such that ||λ̃− λc||2 ⩽ rN implies

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, st, λc)| ||hE(zjt||2 ⩽
e1
9

because rN →
N→∞

0. By definition of the supremum it also implies that

sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, st, λc)| ||hE(zjt||2 ⩽
e1
9

The contraposition is that

sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, st, λc)| ||hE(zjt||2 >
e1
9

implies ∀λ̃ ∈ ΛN
0,c ||λ̃ − λc||2 > rN which is impossible by definition of ΛN

0,c. Conse-

quently

N∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)−Dj(ρ, st, λc)| ||hE(zjt||2 >
e1
9
)

⩽
N∑
c=1

P(∩λ̃∈ΛN
0,c
||λ̃− λc||2 > rN ) = 0

Similarly

N∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, ŝt, λ̃)−Dj(ρ, ŝt, λc)| ||hE(zjt||2 >
e1
9
) = 0

(c) With the same arguments as in (b)

P(sup
λ̃

1√
T
||
∑
j,t

(Dj(ρ, ŝt, λ̃)−Dj(ρ̂, ŝt, λ̃))hE(zjt)||2 >
e1
3
)

⩽
N∑
c=1

P(
1√
T
||
∑
j,t

(Dj(ρ, ŝt, λc)−Dj(ρ̂, ŝt, λc))hE(zjt)||2 >
e1
9
)

+
N∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t

|Dj(ρ, ŝt, λ̃)−Dj(ρ, ŝt, λc)| ||hE(zjt)||2 >
e1
9
)

+
N∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t

|Dj(ρ̂, ŝt, λc)−Dj(ρ̂, ŝt, λ̃)| ||hE(zjt)||2 >
e1
9
)

=
N∑
c=1

P(
1√
T
||
∑
j,t

(Dj(ρ, ŝt, λc)−Dj(ρ̂, ŝt, λc))hE(zjt)||2 >
e1
9
)
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where Dj(ρ, st, λc) = C(H)(δ0, st, x2t, f0(·|λc)). Dj is C∞ in ρ ∈ (0; 1), moreover

ρj(δt, x2t, f0(·|λ̃)) and ρ̂j(δt, x2t, f0(·|λ̃)) are continuously differentiable in Λ0. There-

fore there exists some e2 > 0 such that

1√
T

∑
j,t

|Dj(ρ, ŝt, λc)−Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >
e1
9

implies sup
a∈B

1√
T

∑
j,t ||ρ(a, x2t, f0(·|λc) − ρ̂(a, x2t, f0(·|λc))||2 > e2, and as B is compact

we can cover it by Ñ closed balls BÑ
b = {a ∈ B : ||a − ab|| ⩽ rÑ} with ab ∈ B for any

b = 1, . . . , Ñ so that

N∑
c=1

P(
1√
T

∑
j,t

|Dj(ρ, ŝt, λc)−Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >
e1
9
)

⩽
N∑
c=1

P(sup
a∈B

1√
T

∑
j,t

||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

⩽
∑
c,b

P( sup
a∈BÑ

b

1√
T

∑
j,t

||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

=
∑
c,b

P(
1√
T

∑
j,t

||ρ(ab, x2t, f0(·|λc)− ρ̂(ab, x2t, f0(·|λc))||2 > e2)

where the last equality was obtained reusing arguments from (b). As a consequence

let Fjt(v) =
exp{abj+x′

2jtv}
1+

∑
k exp{abk+x′

2ktv}
and P∗(·) = P(·|xt, ξt) then using Markov inequality and

Cauchy-Schwarz inequality

P∗(
1√
T

∑
j,t

||ρ(ab, x2t, f0(·|λ̃))− ρ̂(ab, x2t, f0(·|λ̃))||2 > e2)

⩽
J
∑

t E∗(||ρ̂(ab, x2t, f0(·|λ̃))− ρ(ab, x2t, f0(·|λ̃))||2)
e2
√
T

⩽
J
∑

t

√∑
j E∗

(
( 1
R

∑R
r=1 Fjt(vR)− E∗(Fjt(vR)))2

)
e2
√
T

=
J
∑

t

√∑
j V ar∗( 1

R

∑R
r=1 Fjt(vr))

e2
√
T

⩽
J3/2

e2

√
T

R

where the fact that vr are iid draws from f0(·|λ̃) independent from all other variables
has been used. It follows by taking the expectation and summing over N and Ñ that

P(sup
λ̃

1√
T

∑
j,t

|Dj(ρ, ŝt, λ̃)−Dj(ρ̂, ŝt, λ̃)| hE(zjt)||2 →
T→∞

0

by Assumption E(i).
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2. The 2nd statement is not formally proven as it largely builds on the proof of the 1st state-

ment. To see why recall that

Γ̂T (θ̃, h)− ΓT (θ̃, h) =
1

T

∑
jt

h(zjt)
∂

∂θ
(ξ̂(θ̃)− ξjt(θ̃))

′

More precisely let e′j = (0 . . . 0 1︸︷︷︸
j-th coordinate

0 . . . 0) then

∂ξjt(θ̃)

∂β
= −x1jt,

∂

∂λ
ξjt(θ̃) = −e′j

(
∂ρ(δt(λ̃), x2t, f0(·|λ̃))

∂δ

)−1 ∫
exp{δjt(λ̃) + x′

2jtv}
1 +

∑J
k=1 exp{δkt(λ̃) + x′

2ktv}
∂

∂λ
f0(v|λ̃)dv

Thus the columns of the matrix Γ̂T (θ̃, h)−ΓT (θ̃, h) associated to the derivative in β are equal

to 0. Furthermore using an uniform continuity argument
∣∣∣∂ξ̂jt(θ̃)∂λ

− ∂ξjt(θ̃)

∂λ

∣∣∣ > e1 is implied by

||δ̂t(λ̃)− δt(λ̃)||2 > e2 for some e2 > 0. Using the compactness of Λ0 and Assumption E it is

straightforward that sup
λ̃

||Γ̂T (θ̃, h)−ΓT (θ̃, h)||2
P→ 0 for any h which satisfies the conditions

in Assumption D.

3. The 3rd statement follows from the 1st. Indeed using Cauchy-Schwarz and properties of the

supremum

sup
θ̃∈Θ0

|Q̂T (θ̃)−QT (θ̃)| =|(ĝT (θ̃, hE)− gT (θ̃, hE))
′Ŵ (ĝT (θ̃, hE)− gT (θ̃, hE))

− 2(ĝT (θ̃, hE)− gT (θ̃, hE))
′ŴgT (θ̃, hE))|

⩽ sup
θ̃∈Θ0

||(ĝT (θ̃, hE)− gT (θ̃, hE))||22µ̄(Ŵ )

+ 2 sup
θ̃∈Θ0

||(ĝT (θ̃, hE)− gT (θ̃, hE))||2 sup
θ̃∈Θ0

||gT (θ̃, hE))||2µ̄(Ŵ )

where µ̄(·) maps a square matrix towards its maximum eigenvalue. By D(iv) and definition

of the L2 matrix norm, µ̄(Ŵ )
P→ µ̄(W ). Then we apply Jennrich’s ULLN: the data is iid, Θ0 is

compact, and gT (θ̃, hE) =
∑

j ξjt(f0(·|λ̃), β̃)hE(zjt) has an enveloppe with finite absolute 1st

moment because ξjt(f0(·|λ̃), β̃) = ρ−1(st, x2t, λ̃)−x′
1jtβ̃ and ρ−1(·) has a maximum because it

is continuous and its input are in a compact and because β̃ is in a compact and x1jt has finite

4th moments, see Assumption B; Thus by the CMT sup
θ̃∈Θ0

||gT (θ̃, hE))||2
P→ sup

θ̃∈Θ0

||g(θ̃, hE)||2;

Finally using the 1st statement we have ||(ĝT (θ̃, hE) − gT (θ̃, hE))||2
P→ 0 therefore by the

CMT

sup
θ̃∈Θ0

|Q̂T (θ̃)−QT (θ̃)|
P→ 0
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B.4.5 Asymptotic Properties of the BLP estimator

Lemma 2.8 (Consistency of BLP Estimator).

Given parametric assumption F0 and under assumptions B-E,

θ̂
P→ θ0

.

Proof. We prove consistency using arguments for the consistency of M-estimators. For any e1 > 0

such that |θ̂−θ0| > e1 then by Assumption D(iii) there exists some e2 > 0 such thatQ(θ̂)−Q(θ0) >

e2 as θ0 is the unique minimizer of the objective. Thence for any e1 > 0, ∃e2 > 0 such that

P(|θ̂ − θ0| > e1) ⩽ P(Q(θ̂)−Q(θ0) > e2)

= P(Q̂T (θ0)−Q(θ0) +Q(θ̂)− Q̂T (θ̂) + Q̂T (θ̂)− Q̂T (θ0) > e2)

⩽ P(Q̂T (θ0)−Q(θ0) +Q(θ̂)− Q̂T (θ̂) > e2)

⩽ P(Q̂T (θ0)−Q(θ0) > (1− α)e2) + P(Q(θ̂)− Q̂T (θ̂) > αe2)

where α ∈ (0; 1), the 2nd inequality comes from the fact that Q̂T (θ̂) − Q̂T (θ0) is almost surely

negative by definition of θ̂, and the 3rd inequality is obtained by utilizing properties of indicator

functions. Then by a direct implication of Lemma 2.7 the right-hand-side converges to 0.

Lemma 2.9 (Asymptotic Normality of BLP Estimator).

Given parametric assumption F0, under assumptions B-E and under H0 : f ∈ F0

√
T (θ̂ − θ0) = (Γ′(θ0, hE)WΓ(θ0, hE))

−1
√
TΓ′(θ0, hE)WgT (θ0, hE) + oP (1)

Furthermore under H0; f ∈ F0

√
T (θ̂ − θ0)

d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))
−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

Proof. We prove asymptotic normality using arguments from M-estimators asymptotics. From

Taylor’s theorem there exists some θ̃ such that ||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2 and

ĝT (θ̂, hE) = ĝT (θ0, hE) + Γ̂T (θ̃, hE)(θ̂ − θ0)
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⇒
√
T Γ̂′

T (θ̂, hE)Ŵ ĝT (θ̂, hE) =
√
T Γ̂′

T (θ̂, hE)Ŵ ĝT (θ0, hE) + Γ̂′
T (θ̂, hE)Ŵ Γ̂T (θ̃, hE)

√
T (θ̂ − θ0) = 0

⇔
√
T (θ̂ − θ0) = −

(
Γ̂′
T (θ̂, hE)Ŵ Γ̂T (θ̃, hE)

)−1√
T Γ̂′

T (θ̂, hE)Ŵ ĝT (θ0, hE)

where the 1st implication is due to the FOC Assumption D(v). Then, we apply the CMT to

(A,B) 7→ (A′BA)−1A′B which is a continuous mapping if A and B are full rank so that when

taking A = Γ̂T (θ̂, hE) and B = Ŵ we obtain:

√
T (θ̂ − θ0) = − (Γ′(θ0, hE)WΓ(θ0, hE))

−1
√
TΓ′(θ0, hE)WgT (θ0, hE) + oP (1)

To prove that plim Γ̂T (θ̂, hE) = plim Γ̂T (θ̃, hE) = Γ(θ0, hE) we make the following decomposition

Γ̂T (θ̂, hE)− Γ(θ0, hE) = Γ̂T (θ̂, hE)− ΓT (θ̂, hE) + ΓT (θ̂, hE)− Γ(θ̂, hE) + Γ(θ̂, hE)− Γ(θ0, hE)

where the 1st difference is oP (1) by Lemma 2.7, the 3rd difference is oP (1) by the CMT and the

consistency of θ̂, see Lemma 2.8, and the 2nd difference is oP (1) by Jennrich’s ULLN. The ULLN

can be applied if and only if
∑

j hE(zjt)
∂ξjt(θ)

∂θ
has an enveloppe with finite 1st absolute moments:

ξjt(θ) = ρ−1(st, x2t, f0(·|λ)) − x′
1jtβ and

∂ξjt(θ)

∂β
= x1jt with x1jt has finite moments of order 4 by

Assumption B(iv), whereas
∂ξjt(θ)

∂λ
= ∂ρ−1(st,x2t,f0(·|λ̃))

∂λ
and ρ−1 is C∞ with arguments (st, x2t, λ)

which take values in a compact thus ∂ρ−1

∂λ
has bounds.

Thence plim Γ̂T (θ̂, hE) = plim Γ̂T (θ̃, hE) = Γ(θ0, hE) which is full rank by Assumption D(ii),

plim Ŵ = W which is full rank by Assumption D(iv), and by Lemma 2.7 plim
√
T (ĝT (θ0, hE)−

gT (θ0, hE)) = 0 so we can apply the aforementioned CMT and by the CLT which can be applied

because g(θ0, hE) = 0 under the null

√
T (θ̂ − θ0) =− (Γ′(θ0, hE)WΓ(θ0, hE))

−1
√
TΓ′(θ0, hE)WgT (θ0, hE) + oP (1)

d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))
−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

B.4.6 Asymptotic distribution of the test statistic

Proof of Theorem 5.1
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Proof. This proof leans heavily on the proof of Lemma 2.9. By Taylor’s theorem there exists θ̃

such that ||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2

√
T ĝT (θ̂, hD) =

√
T ĝT (θ0, hD) + Γ̂T (θ̃, hD)

√
T (θ̂ − θ0)

= (I|hD|0 − Γ(θ0, hD)(Γ
′(θ0, hD)WΓ(θ0, hD))

−1Γ′(θ0, hD)W )
√
T

gT (θ0, hD)

gT (θ0, hE)

+ oP (1)

≡ (I|hD|0 G)
√
T

gT (θ0, hD)

gT (θ0, hE)

+ oP (1)

The second equality is obtained by relying on the proof of Lemma 2.9 to express
√
T (θ̂− θ0) as a

function of moments, by relying on Lemma 2.7 so that plim
√
T ĝT (θ0, hD) = plim

√
TgT (θ0, hD)

and plim Γ̂T (θ̃, hD) = plim ΓT (θ0, hD), and by using the CMT.

• Under H0 : f ∈ F0 then E
[∑

j hD(zjt)ξjt(θ0)
]
= 0 by LIE. So using the CLT and Slutsky’s

Lemma we obtain
√
T ĝT (θ̂, hD)

d→ Z ∼ N (0,Ω0)

where

Ω0 =

(
I|hD|0 G

) Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)


I|hD|0

G′


with

Ω(F0, hD) = E
[(∑

j

ξjt(f(.|λ0), β0)hD(zjt)

)(∑
j

hD(zjt)ξjt(f0(.|λ0), β0)

)′]

Ω(F0, hD, hE) = E
[(∑

j

ξjt(f(.|λ0), β0)hD(zjt)

)(∑
j

hE(zjt)ξjt(f0(.|λ0), β0)

)′]
G = −Γ(θ0, hD) [Γ(θ0, hE)

′WΓ(θ0, hE)]
−1

Γ(θ0, hE)
′W

Thence by the continuous mapping theorem:

S(hD,F0, θ̂) = ĝT (θ̂, hD)
′Σ̂ĝT (θ̂, hD)

d→ Z ′ΣZ
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• Under H ′
a : E

[∑
j hD(zjt)ξjt(f0(·|λ0), β0)

]
̸= 0, we have by Lemma 2.7, by consistency of

θ̂
P→ θ0 and the CMT:

ĝT (θ̂, hD) = gT (θ0, hD) + oP (1)

Thus by Assumption D(iv) and the CMT

S(hD,F0, θ̂)

T

P→ E

[∑
j

hD(zjt)ξjt(f0(·|λ0), β0)

]′
ΣE

[∑
j

hD(zjt)ξjt(f0(·|λ0), β0)

]
︸ ︷︷ ︸

κ(hD,F0,θ0)

Under H ′
a, κ(hD,F0, θ0) is strictly positive because Σ is positive definite. Thence,

∀q ∈ R lim
T→∞

P(S(hD,F0, θ̂) > q) = lim
T→∞

P

(
S(hD,F0, θ̂)− q

T
> 0

)
= P(κ(hD,F0, θ0) > 0)

= 1

where the 2nd equality holds because convergence in probability implies convergence in

distribution.

B.4.7 Application of Theorem 5.1 to the 2 polar cases

1. Sargan-Hansen J test

If hD = hE, with W and Σ are set to be equal to the GMM 2-step optimal weighting matrix

Σ = W = E
[(∑

j

ξjt(f0(·|λ0), β0)hE(zjt)

)(∑
j

ξjt(f0(·|λ0), β0)hE(zjt)

)′ ]−1

= Ω(F0, hE)
−1

Then under H0:

S(hD,F0, θ̂)
d→ χ2

|hE |0−|θ|0

Proof. By applying theorem 5.1, we have:

S(hD,F0, θ̂)
d→ Z ′ΣZ with Z ∼ N (0,Ω0)
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If hD = hE and W = Ω(F0, hE)
−1 then Ω0 simplifies to

Ω0 = Ω(F0, hE)− Γ(θ0, hE)
[
Γ(θ0, hE)

′Ω(F0, hE)
−1Γ(θ0, hE)

]−1
Γ(θ0, hE)

′

= Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)Ω(F0, hE)

1/2

with MΩ(F0,hE)−1/2Γ(θ0,hE) ≡ I|hE |0 − PΩ(F0,hE)−1/2Γ(θ0,hE) is the orthogonal projection on the

space orthogonal to Ω(F0, hE)
−1/2Γ(θ0, hE). Let Z̃ ∼ N (0, I|hE |0), we have by definition:

Z = Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)Z̃ =⇒ Σ1/2Z = MΩ(F0,hE)−1/2Γ(θ0,hE)Z̃

=⇒ Z ′ΣZ = Z̃ ′MΩ(F0,hE)−1/2Γ(θ0,hE)Z̃

Second line comes from symmetry and idempotence of MΩ(F0,hE)−1/2Γ(θ0,hE). Orthogonal

projections have eigenvalues equal to either 0 or 1 with the number of eigenvalues equal to

one corresponding to the rank of the space it projects into, which in our case is |hE| − |θ|0.

If we denote by V the matrix of eigenvectors of MΩ(F0,hE)−1/2Γ(θ0,hE) then note that V ′Z̃ ∼

N (0, I|hE |0) so that

Z ′ΣZ =

|hE |0−|θ|0∑
k=1

(V ′Z̃)2k ∼ χ2
|hE |0−|θ|0

2. Non-redundant hD and hE

If Ω0 is full rank and if the econometrician sets Σ = Ω−1
0 , then our test statistic has the

following asymptotic distribution under H0:

S(hT ,F0, θ̂)
d→ χ2

|hD|0

One sufficient condition for Ω0 being full rank is (ξjt(f(·|λ0), β0))
J
j=1 is independent across j

and (hE(zjt), hD(zjt)) not being perfectly colinear.

Proof. The asymptotic result is direct; (ξjt(f0(·|λ0), β0))
J
j=1 being independent across j and

(hE(zjt), hD(zjt)) not being perfectly colinear implies that

Ω(F0, hE, hD) =
∑
j

E
[
ξjt(f0(·|λ0), β0)

2hE(zjt)hD(zjt)
′]
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⇒ Ω0 =
∑
j

(I|hD|0 G)V ar

ξjt(f0(·|λ0), β0)

hD(zjt)

hE(zjt)



I|hD|0

G′


Thus Ω0 is positive definite because it is the sum of positive definite matrices.

B.5 Properties of the MPI in the composite specification test: f ∈ F0

Proposition 8 (Consistency of the test for the composite test with the MPI). Under Assumption

A and Assumptions B-E

Ha : f /∈ F0 =⇒ ∀q ∈ R+, P(S(h∗
D,F0, θ̂) > q) → 1.

Proof of Proposition 8.

From corollary 2.1. Under Assumption A,

Ha : f /∈ F0 =⇒ E[ξjt(f0(·|λ0), β0)|zjt] ̸= 0 a.s

=⇒ E[ξjt(f0(.|λ0), β0)|zjt]2 > 0 a.s

=⇒ E
[
E[ξjt(f0(.|λ0), β0)|zjt]2

]
> 0

=⇒ E
[
E[ξjt(f0(.|λ0), β0)E[ξjt(f0(.|λ0)|zjt]|zjt]

]
> 0

=⇒ E
[
ξjt(f0(.|λ0), β0)E[ξjt(f0(.|λ0)|zjt]

]
> 0

=⇒ ∀α ̸= 0 H ′
a : E

[
ξjt(f0(.|λ0), β0)αE[∆

ξjt
0,a|zjt]︸ ︷︷ ︸

h∗
D(zjt)

]
̸= 0.

From theorem 5.1, under Assumptions B-E,

H ′
a : E

[
ξjt(f0(.|λ0), β0)h

∗
D(zjt)

]
̸= 0 =⇒ ∀q ∈ R+, P(S(h∗

D,F0, θ̂) > q) → 1.
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C Additional results and comments

C.1 Literature on the identification of the distribution of RC

In this section, we briefly summarize some recent findings on the identification of random coeffi-

cients in discrete choice models. In their seminal paper, Berry and Haile (2014) shows the iden-

tification of the demand functions ρ in a framework that encompasses the BLP model but their

result does not entail identification of the random coefficients’ distribution per se. To achieve

their identification result, they require a completeness condition on the instruments as well as

additional conditions (eg: connected substitutes) to ensure invertibility of the demand functions.

They also need to impose that at least one of the product characteristic has a coefficient that is

not random and that is equal to 1. Notice that in BLP model, the structure implied by the logit

shock guarantees invertibility of the demand functions.

Fox et al. (2012) provides conditions under which the distribution of random coefficients is

identified in a mixed logit model with micro-level data and no endogeneity. Their identification

result requires continuous characteristics in x2t and rules out interaction terms (eg polynomial

terms of x2jt). Moreover, their result is restricted to distributions of random coefficients with a

compact support - excluding for instance a normally distributed random coefficient.

Fox and Gandhi (2011) investigates the identification of the joint distribution of random coeffi-

cients vi and idiosyncratic shocks εijt in aggregate demand models without endogeneity. They also

consider a setting where endogeneity is introduced in a very restrictive way. They show identifica-

tion under a special regressor assumption and finite support of the unobserved heterogeneity. The

special regressor assumption assumes that a variable in x1t has full support and has an associated

coefficient that is either 1 or -1. This special regressor assumption is very common in the literature

on the identification of random coefficients (see Ichimura and Thompson (1998), Berry and Haile

(2009), Matzkin (2007) and Lewbel (2000)). Their framework does not nest the standard BLP

model as ϵijt and vi are both assumed to have a finite support but it is more general in other

dimensions. They do not exploit the logit distributional assumption on εijt, they do not impose

independence between vi and εijt, their identification argument can be extended to the case where

multiple goods are purchased.
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In a setting much closer to ours, Dunker et al. (2022) studies the identification of the distri-

bution of random coefficients in endogenous aggregate demand models which includes the BLP

model as a special case (in particular, no parametric assumption is made on the idiosyncratic

shock εijt). They make a clever use of the Radon transform to identify f . The price they have to

incur for flexibility is that they need to make stringent assumptions on the product characteristics:

variables in xt are required to be continuous and to satisfy a joint full support assumption. The

idea is to exploit the variation in the covariates in order to trace out the distribution of rc f .

Unfortunately, these requirements are rarely met in real data sets.

In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions

assumed in the standard BLP model and looks for the set of minimal assumptions under which

the distribution of random coefficients is identified. This approach allows him to obtain sufficient

conditions which are much less stringent than the rest of the literature (no special regressor

assumption, no full support assumption, no continuity assumption). To be more specific, he

shows that if the demand functions are identified on an open set of RJ38, then the distribution

of random coefficients is identified. His proof astutely exploits the real analytic property of the

demand functions39.

C.2 Feasible MPI: conditional expectation

In this subsection, we briefly motivate our approach of approximating the conditional expectation

by first projecting the endogenous variables on a relevant subset of the exogenous variables. The

problem we encounter can be summarized as follows. We want to compute E[g(x1t, x2t)|zjt], where

g is highly non-linear, x1t are endogenous variables and x2t are exogenous variables. Moreover,

zjt has a large dimension (in the BLP model, its order of magnitude the number of products×

number of characteristics). Our approach consists in first projecting the endogenous variables x1t

on a relevant subset of zt, before plugging them into g(x1t, x2t). The traditional approach consists

in using a non-parametric estimator of E[g(x1t, x2t)|zjt]. However, given the dimension of zjt, this

38which can be achieved using theorem 1 in Berry and Haile (2014)
39In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies identification

of ρ on RJ . From global identification of ρ, he is then able to show that the random coefficients’ distribution is

identified under a simple rank condition on x2t
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approach is likely to yield poor results in practice because of the huge curse of dimensionality. In

contrast, we know that some endogenous variables in x1t only depend on a subset of zjt, which

we denote z̃1jt, then we can use this to our advantage to construct a more precise estimator

of E[[g(x1t, x2t)|zjt]. First, x̂1t = E[x1t|z̃jt] will be much more accurately estimated as we only

condition on ẑ1jt (for instance, the price usually depends on its own cost shifters and its own

product characteristics, while the dependence with respect to characteristics of other goods is much

weaker and can be ignored empirically). For exposition, we further assume that dim(x1t) = 1. We

take a second order Taylor expansion of E[g(x1t, x2t)|zjt] around x̂1t.

E[g(x1t, x2t)|zjt] = E[g(x̂1t, x2t)|zjt] + E
[
∂g(x̂1t, x2t)

∂x1

(x1t − x̂1t)
∣∣zjt]+ E

[
∂2g(x̃1t, x2t)

∂x2
1

(x1t − x̂1t)
2
∣∣zjt]

= g(x̂1t, x2t) +
∂g(x̂1t, x2t)

∂x1

E[(x1t − x̂1t)|zjt]︸ ︷︷ ︸
=0

+E
[
∂2g(x̃1t, x2t)

∂x2
1

(x1t − x̂1t)
2
∣∣zjt]

with x̃1t ∈ [x1t; x̂1t]. Our approach yields an estimator that converges faster to g(x̂1t, x2t),

which is a first order approximation of E[g(x1t, x2t)|zjt].

C.3 Choice of the large-T asymptotics

In this paper, we study the asymptotics of our test when the number of markets T grows to

infinity. We could also study the asymptotic properties of the BLP estimator and of the test when

J grows to infinity and T stays fixed. We do not pursue this route for several reasons. First,

from an economic point of view, a market with a number of products that grows to infinity is

hardly conceivable in industries with imperfect competition and barriers to entry. Second, from a

theoretical point of view there is a tension between the identification of demand which require all

market shares to be strictly positive, see Berry and Haile (2014), and the large market asymptotics

which require all market shares to tend to 0 as J grows to infinity, see Berry et al. (2004). At the

same time it is well established that a many (weak) instruments problem can easily occur in a BLP

model with a fixed number of markets and many products especially when using the traditional

BLP instruments, see Armstrong (2016).

Consequently only markets with perfect competition and a careful choice of instruments could

somehow fit the assumptions necessary for the BLP model to yield consistent estimators and
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valid tests with large J . Yet in the majority of empirical IO papers the markets have imperfect

competition, sometimes oligopolies, and use the traditional BLP instruments. Thus we establish

our theory with a large number of independent markets, which is a natural setting for empirical

IO papers and which is not plagued with the aforementioned theoretical problems.

C.4 Construction of the interval instruments in practice

We now provide more details on how to construct the interval instruments in practice. The

procedure to construct the interval instruments is as follows:

1. Given (F0, Ŵ , hE), the researcher derives the BLP estimator θ̂

2. Then the researcher chooses L points (vl)
L
l=1 ∈ RL in the presumed support of f0(·|λ̂).

3. Finally, the researcher can construct a set of L interval instruments based on the approxi-

mations of the MPI that we develop in sections 4.2 and 4.1.

• Global approximation: {πj,l(zjt)}l=1,...,L interval instruments, which are such that:

E [∆j(st, x2t, f0, fa)|zjt] ≈ log

(
L∑
l=1

ωl πj,l(zjt)

)
with πj,l(zjt) =

exp{x′
2jtvl}

1+
∑J

k=1 exp{δ̂0kt+x′
2ktvl}∫

RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ̂0jt+x′
2ktv}

f0(v)dv

with δ̂0t the linear projection of δ0t on zjt (or a carefully chosen subset of zjt).

• Local approximation: {π̄j,l(zjt)}l=1,...,L interval instruments such that

E[∆j(st, x2t, f0, fa)|zjt] ≈
L∑
l=1

ω̄l π̄j,l(zjt)

with π̄j,l(zjt) =

(
∂ρ(δ̂0t , x2t, f0)

∂δ

)−1
 exp{δ̂0t + x2tvl}

1 +
∑J

k=1 exp
{
δ̂0kt + x′2ktvl

} − ρj(δ̂
0
t , x2t, f0)


with δ̂0t the linear projection of δ0t on zjt (or a carefully chosen subset of zjt).

Choice of the L points in the domain of fa The researcher doesn’t know a priori the support

of the true density fa. Thus, he/she must choose points in the domain of definition of fa. If this

choice coincides with points of the support where |f0(·|λ0)−fa| is large, then this choice generates
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more informative instruments. In practice, one can take points in the high density regions of

f0(·|λ0) (eg if F0 is the Gaussian family, then one can take points around the mean λ0). The

choice of of the number of instruments N obeys a usual bias variance tradeoff. On the one hand,

a large L allows to better approximate the MPI and thus increases the detection ability of the

instruments. On the other hand, it is well-known that a larger number of instruments can induce

finite sample bias and can distort asymptotic distributions of estimators and tests such as the

over-identification test.40 Moreover, we observe in our simulations, that when one takes points in

the support that are too close to each other, the implied instruments suffer from high levels of

colinearity. For these reasons we advise not to use too few or too many interval instruments, in

our simulations and application we use between 6 and 10 instruments (in every dimension). We

leave a formal analysis of the optimal choice of L and of the general approximations properties of

the interval instruments for future work.

C.5 Feasible MPIs for estimation

In the estimation framework, the researcher assumes that f ∈ F0 = {f0(·|λ̃) : λ̃ ∈ Λ0} and

wants to estimate the true parameter θ0 = (β′
0, λ

′
0)

′ under this parametric restriction. From the

connection between the MPI and the local instruments that we present in Section 3.3, we infer

that good testing instruments hE(zjt) ought to approximate the MPI devoted to test H0 : θ = θ0

against any local alternative. If we have an initial estimator of θ0, we can directly use the interval

instruments presented in Section 4 to approximate the MPI devoted to test H0 : θ = θ0. However,

this approach requires to estimate θ̂ in a first step. Here, we present an alternative approach based

on the global approximation of the MPI we derived in Section 4.2, which has the advantage of not

requiring a first stage estimate of θ0. it is straightforward to show that for any true parameter θ0

and any alternative θa, we can rewrite the global approximation of the non-linear part of the MPI

as follows:

40See Roodman (2009) for a review on the effect of many possibly weak moments on estimation and testing.
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E[∆j(st, x2t, θ0, θa)|zjt] ≈ log

(
L∑
l=1

¯̄ωl(θ0, θa) ˆ̄̄πj,l(zjt)

)
with ˆ̄̄πj,l(zjt) =

exp{x′2jtvl}

1 +
∑J

k=1 exp
{
ˆ̄δ0jt + x2jkvl

}
and ¯̄ωl(θ0, θa) =

ω̄l(θa)∫
RK2

exp{x′
2jtv}

1+
∑J

k=1 exp{δ0jt+x′
2jkv}

f0(·|λ0)(v)dv

, with ˆ̄δ0jt projected first stage estimates of δ0jt, which can be obtained, for example, under the logit

specification. ˆ̄̄πj,l(zjt) do not depend on f0 and can be used for estimation.

C.6 Estimation procedure when the distribution of RC is a mixture

In this section, we present a procedure to estimate the BLP model when the distribution of RC

is parametrized as a mixture. Namely, we perform the estimation under H0 : f ∈ F0 with F0 the

family of Gaussian mixtures with L components. The pdf of a Gaussian mixture writes as follows:

∀x ∈ R , f0(x|λ0) =
L∑
l=1

pl0fl(x|λl0)
L∑
l=1

pl0 = 1 L ⩾ 1

where fl0(·|λl0) is the pdf of a N (µl0, σ
2
l0).

As long as the means are different (µl0 ̸= µl′0 ∀l ̸= l′), the gaussian mixture is uniquely

characterized by the vector λ0 = (p10, . . . , pL0, µ10, . . . , µL0, σ
2
10, . . . , σ

2
L0) up to permutations of

indexes41. The objective of our procedure is to estimate the parameters of the model θ0 = (β0, λ0)

where λ0 characterizes the mixture. In general, the problem of estimating a density by a mixture is

solved through the use of the well-known Expectation-Maximization (EM) algorithm. In our case,

the application of this algorithm is made difficult by two main obstacles. First, we do not observe

directly the random coefficients. Second, we do not have individual choice data which would have

enabled us to construct a likelihood as in Train (2008). As an alternative, we propose to adapt

the BLP estimation procedure to estimate the parameters of a mixture of gaussians instead of the

single normal distribution. The mixture affects the derivation of the market shares. The random

coefficient vi is now a gaussian mixture. Hence, vi =
∑L

l=1 1{Di = l}vil where (vil)
n
i=1 are iid and

41If for some l ̸= l′ we have µl0 = µl′0 then the Gaussian mixture becomes observationally equivalent to an

infinite number of other Gaussian mixtures
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have density fl0(·|λl0) known up to λl0 for l = 1, . . . , L, and where (Di)
n
i=1 are iid categorically

distributed with pmf P(Di = l) = pl0. For all market t and product j, the demand functions are

as follows:

ρj(δt, x2t, f0(.|λ0)) = P(j chosen in market t by i|x1t, x2t, ξt)

=

∫
R

exp{x′
1jtβ0 + x′

2jtv + ξjt}
1 +

∑J
j′=1 exp{x′

1j′tβ0 + x′
2j′tv + ξj′t}

f0(v|λ0)dv

=
L∑
l=1

pl0

∫
R

exp{δjt + x′
2jtv}

1 +
∑J

j′=1 exp{δj′t + x′
2j′tv}

fl0(v|λl0)dv

Reparametrization. The parameter λ associated with the mixture consists of the means, the

standard deviation and the probability of each component. As highlighted by Ketz (2019) in

the simple Gaussian case, the way we parametrize the model can greatly affect the asymptotic

properties of the estimator as well as the quality of the estimation. In particular, he shows

that the standard deviations σ should be reparametrized in order to avoid boundaries issues

when σ close to 0. We follow this parametrization and perform the minimization with respect

to {(+/−)
√
σl}Ll=1 instead and (σl)

L
l=1 directly. An additional difficulty in the case of mix-

tures concerns the estimation of the probabilities associated to each component. These prob-

abilities must all be between 0 and 1 and their sum must be equal to 1. To smoothly in-

tegrate these constraints, we perform the optimization with respect to γ = (γ2, . . . , γL) with

p = (p1, p2, . . . , pL) = ( 1

1+
∑L

l=2 exp{γl)
, exp{γ2)
1+

∑L
l=2 exp{γl)

, . . . , exp{γL)
1+

∑L
l=2 exp{γl)

).

Estimation details. Apart from the modification in the computation of the market shares and

the new parametrization of the model, the estimation procedure with a mixture follows closely

the traditional one and the parameters of interest are estimated by minimizing a GMM criterion.

Let Q(θ) the GMM objective function:

Q(θ) = ξ̂(θ)′hE(Z)WhE(Z)
′ξ̂(θ)

We now describe the derivation of the Gradient that we provide to the minimization program.
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∂Q
∂θ

= 2

[
∂ξ̂(θ)

∂θ

]′
hE(Z)WhE(Z)

′ξ̂(θ)

Where ∂ξ̂(θ)
∂β

= −x1 and where by the implicit function theorem we have ρ̂j(δt, x2t, λ)−sjt = 0 ∀j, t

which implies:

∂ξ̂(θ)

∂λ
=

∂δ̂(θ)

∂λ
= −

[
∂ρ̂(δ, x2, λ)

∂δ

]−1
∂ρ̂(δ, x2, λ)

∂λ

• ∂ρ
∂δ

is a JT × JT diagonal by block matrix such that:

∂ρj (δt, x2t, λ)

∂δkt
=


∑

l pl
∫
Tjlt(v) (1− Tklt(v))ϕl(v)dv if j = k

−
∑

l pl
∫
Tjlt(v)Tklt(v)ϕl(v)dv if j ̸= k

with Tjlt(v) ≡
exp{δjt+x′

2jtvl}
1+

∑J
j′=1 exp{δj′t+x′

2j′tvl}

• ∂ρ
∂λ

is a JT × (3L− 1) matrix such that:

∂ρj (δt, x2t, λ)

∂µl

= pl

∫
Tjlt

(
x2jt −

∑
j′

Tj′ltx2j′t

)
ϕ(v)dv

∂ρj (δt, x2t, λ)

∂σl

= pl

∫
Tjlt

(
x2jt −

∑
j′

Tj′ltx2j′t

)
vϕ(v)dv

∂ρj (δt, x2t, λ)

∂γl
=

L∑
l′=1

ζ(l, l′)

∫
Tjlt

With ζ(l, l′) = − exp{γl)
1+

∑
k ̸=1 exp{γk)

× exp{γl′ )
1+

∑
k ̸=1 exp{γk)

+1{l = l′} exp{γl)
1+

∑
k ̸=1 exp{γk)

= −pl×pl′ +1{l = l′}pl

C.7 Properties of the feasible approximations of the MPI

So far, we have studied the properties of the MPI, which is an ideal instrument that cannot

be derived in practice. Nevertheless, in light of the previous results, the MPI provides a useful

upper bound on the power that can be reached using our specification test. More precisely, the
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asymptotic slope reached by the MPI can be interpreted as a power envelope on our specification

test. Ideally, we want our specification test, with the approximated MPIs as instruments, to

achieve slopes close to the ones reached by the MPI. We now distinguish 2 situations.

First, we consider the case where the econometrician tests H0 : (f, β) = (f0, β0) against the

a known alternative overH̄a : (f, β) = (fa, βa). This situation is not interesting in practice as

the econometrician usually doesn’t know the true alternative and doesn’t want to specify an

alternative. Nevertheless, it illustrates that in this specific case, we can (in theory) derive a

consistent estimator of the MPI. Indeed, in this particular case, we can directly derive an analytical

expression for the correction term ∆
ξjt
0,a either using its definition or the expression in 4.2. Next,

we must to compute the conditional expectation of our the correction term with respect to zjt.

This step is quite challenging because the dimension of zjt is large and because the correction

term is heavily non-linear and non-separable with respect to the endogenous variables. In theory,

a solution is to perform a Sieve non-parametric estimation of the conditional mean and under

standard regularity conditions recover a consistent estimator of E[∆ξjt
0,a|zjt]. Unfortunately, the

rate of converge will be extremely slow given the dimension of zjt and we don’t recommend to

do this in practice. Instead, we suggest to use the global approximation and to project the

endogenous variables on the space spanned by a relevant subset of zjt. As we show in Appendix

C.2, this strategy yields an estimator which converges faster to a first order approximation of the

MPI.

Second, we consider the more realistic situation where the econometrician tests H0 : (f, β) =

(f0, β0) against an unspecified alternative. In this case, we use the interval instruments that we

developed in Section 4 as an approximation of the MPI. Due to the different layers of approxima-

tions which intervene in the construction of these instruments and the absence of knowledge of fa,

it is quite difficult to establish conditions under which these instruments can reach the optimal

slope of the MPI. A thorough analysis of the properties of these instruments is beyond the scope

of this paper and may constitute an interesting starting point for future research. In spite of the

lack of theoretical analysis, our Monte Carlo exercises show that the interval instruments perform

really well in finite sample.
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D Monte Carlo experiments

D.1 Counterfactuals under an alternative distribution

For the simulation exercise presented in Section 6.2, we use the following expressions for own- and

cross-price elasticities for product j ∈ {1, 2, ..., J}. For the sake of simplicity, we drop the market

index, t, in the following expressions.

• Own-price elasticity:

ηjj =
pj
sj

∂sj
∂pj

=
pj
sj

∫
−α

(
1− exp{δj + xcjvi}

1 +
∑J

j′=1 exp{δj′ + xcj′vi}

)
exp{δj + xcjvi}

1 +
∑J

j′=1 exp{δj′ + xcj′vi}︸ ︷︷ ︸
sij

fθ(v)dv

• Cross-price elasticity (k ̸= j):

ηkj =
pk
sj

∂sj
∂pk

=
pk
sj

∫
α

(
exp{δj + xcjvi}

1 +
∑J

j′=1 exp{δj′ + xcj′vi}

)
exp{δk + xckvi}

1 +
∑J

j′=1 exp{δj′ + xcj′vi}
fθ(v)dv

where α = 2 and δj = 2 + xaj + 1.5xbj − 2pj + ξj in the DGP.

Demand functions. In Figure 9, we plot the demand functions generated under the different

specifications (logit and gaussian) of the true densities.
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Figure 9: Demand function
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D.2 Finite sample performance of the test

Practical implementation of the test. For each setting, we estimate the model for 1000 repli-

cations. Minimization is performed with nloptr ( algorithm: NLOPT-LD-LBFGS). We provide an

analytical gradient. The Threshold for the outer loop is 1e-9 while the threshold for the inner loop

is 1e-13. We use squarem and a C++ implementation for the computation of the market shares

to speed up the contraction. We also parallelize the contraction over markets using 7 independent

cores. Now we formally describe the instruments included in each test.

Power against local alternatives. We now assess the local power properties of our test by

assuming that the random coefficient vi is distributed according to a local alternative. Namely, we

assume vi ∼
(
1− 1√

T

)
N (2, 1)+ 1√

T
Y where Y is an alternative distribution including exponential,
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Chi-square, Student, Uniform. We ensure that Y has mean 2 and variance 1. The results are

reported in 13. First, we can observe that except for the uniform local alternative, our test

appears to have non-trivial power against all the other local alternatives. For the exponential and

chi-square distributions, it is clear that our test with interval instruments outperforms the Sargan-J

test with traditional instruments. For the student local alternative, the results seem quite unstable

for small sample sizes but as T increases, interval instruments also seem to perform better. For

the uniform alternative, it appears that we don’t have power against this local alternative.

Table 13: Empirical power, local alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Test type J I J I Local J I Local J I J I Local J I Local

Exponential 0.266 0.704 0.227 0.677 0.222 0.869 0.272 0.868 0.236 0.982 0.394 0.975

Chi-square 0.217 0.219 0.134 0.174 0.13 0.167 0.096 0.151 0.099 0.171 0.086 0.15

Student 0.212 0.139 0.33 0.436 0.115 0.115 0.127 0.093 0.082 0.13 0.134 0.312

Uniform 0.198 0.1 0.126 0.074 0.107 0.062 0.095 0.051 0.073 0.049 0.084 0.044

D.3 Finite sample performance of Interval instruments for estimation

Practical implementation of the estimation procedure. To assess the performance of

our instruments in estimating the non-linear parameters with a flexible distribution of random

coefficients, we simulate data with a distribution of random coefficients following a mixture of

gaussians and we estimate the parameters of this mixture. For each setting, we estimate the

model for 1050 replications. We select the replications with an objective function below a certain

threshold (in order to avoid local minima). Minimization is performed with nloptr (algorithm:

NLOPT-LD-LBFGS). We provide an analytical gradient, which we describe subsequently. The

Threshold for the outer loop is 1e-9 while the threshold for the inner loop is 1e-13. We use

squarem and a C++ implementation for the computation of the market shares to speed up the

contraction. We also parallelize the contraction over markets using 7 independent core. Before we

formally define the different sets of instruments, let us present the estimation procedure when the

distribution of random coefficients is assumed to be a mixture.
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Instruments Now we formally describe the instruments present in each different sets used for

estimation.

• Differentiation instruments: differentiation instruments + exogenous characteristics (poly-

nomial terms) + cost shifters (20 instruments)

• Optimal instruments are computed in two stages. The first stage instruments consist of

differentiation instruments and exogenous characteristics (polynomial terms). Second stage

instruments consist of polynomial terms of exogenous characteristics and the approxima-

tion of optimal instruments proposed in Reynaert and Verboven (2014) (approximation of

E
[
∂ρ−1

j (st,x2t,λ)

∂λ

∣∣∣∣zt]). The set called optimal instruments includes 15 instruments.

• Interval Instruments are computed in two stages. The first stage instruments consist of

differentiation instruments and exogenous characteristics (polynomial terms). Second stage

instruments are the interval instruments couples with some exogenous characteristics. A

total of 23 instruments. The points in the support to compute the interval instruments are

chose as follows: we take equally spaced points in the interval {β3L − 0.5(β3H − β3L), β3H +

0.5(β3H − β3L)}.

Comparison of the performance between the different sets of instruments. We now

report the mean biases and the empirical
√
MSE of the estimates for each set of instruments and

for different sample sizes. We also plot the distributions of estimates for the non-linear parameters

for the different sets of instruments. First, we plot the distribution of estimates obtained when

the set of differentiation instruments from Gandhi and Houde (2019) is used with a sample of

T = 200 markets and J = 12 products. We observe that despite a relatively large sample,

the differentiation instruments perform rather poorly in estimating the non-linear parameters

associated with the mixture of Gaussians. In particular, the estimates of the standard deviation

parameters associated to each component are very dispersed and a large portion of the estimates

are bunched at zero. Second, we plot the distribution of non-linear estimates obtained with the
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optimal instruments from Reynaert and Verboven (2014). They tend to perform better than the

differentiation instruments as we can see that the estimates are more concentrated around the true

value. Yet, it is important to emphasize that the optimal instruments display large failure rates

caused by perfect colinearity of the instruments. Finally, we plot the distribution of estimates for

the non linear parameters when we use the interval instruments developed in Section 4. It appears

clearly that the interval instruments yield a more concentrated distribution of estimates than the

two other sets of instruments. For the sake of conciseness, we do not report the results with a

mixture with 3 components but the observations we make with two components are even more

exacerbated.

Table 14: Estimation mixture with “differentiation” instruments (1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.12 0.022 -0.016 -0.018 0.214 0.184 -0.022 -0.045 0.027

√
MSE 0.308 0.06 0.215 0.215 0.633 0.734 0.281 0.35 0.075

T=50, J=20
bias -0.064 0.011 -0.01 -0.011 0.189 0.347 0.022 -0.081 0.025

√
MSE 0.231 0.044 0.165 0.166 0.566 0.887 0.184 0.291 0.059

T=100, J=12
bias -0.058 0.01 -0.012 -0.012 0.233 0.226 0.02 -0.066 0.027

√
MSE 0.204 0.041 0.147 0.148 0.592 0.703 0.256 0.305 0.072

T=100, J=20
bias -0.04 0.006 -0.007 -0.007 0.198 0.423 0.047 -0.101 0.025

√
MSE 0.165 0.032 0.117 0.116 0.552 0.89 0.164 0.27 0.055

T=200, J=12
bias -0.038 0.007 -0.003 -0.003 0.184 0.167 0.011 -0.049 0.019

√
MSE 0.152 0.03 0.11 0.11 0.466 0.601 0.176 0.262 0.053

Table 15: Estimation mixture with “Optimal” instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.09 0.016 -0.012 -0.013 0.076 0.059 0.026 -0.111 0.01

√
MSE 0.296 0.057 0.234 0.232 0.361 0.483 0.212 0.281 0.036

T=50, J=20
bias -0.046 0.007 0 0.001 0.074 0.11 0.028 -0.089 0.01

√
MSE 0.225 0.044 0.178 0.176 0.328 0.563 0.163 0.228 0.033

T=100, J=12
bias -0.041 0.007 -0.004 -0.003 0.054 0.037 0.019 -0.066 0.007

√
MSE 0.202 0.039 0.157 0.158 0.279 0.4 0.154 0.211 0.028

T=100, J=20
bias -0.029 0.004 -0.003 -0.003 0.074 0.107 0.033 -0.074 0.01

√
MSE 0.153 0.03 0.126 0.124 0.311 0.52 0.129 0.194 0.034

T=200, J=12
bias -0.029 0.005 -0.001 -0.001 0.026 0.011 0.021 -0.061 0.004

√
MSE 0.136 0.026 0.111 0.111 0.184 0.313 0.113 0.172 0.018
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Table 16: Estimation mixture with Global Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.154 0.029 -0.043 -0.045 0.017 0 -0.045 0.004 0.005

√
MSE 0.341 0.067 0.257 0.258 0.277 0.391 0.227 0.259 0.024

T=50, J=20
bias -0.092 0.017 -0.02 -0.021 0.013 0.042 -0.018 -0.003 0.004

√
MSE 0.245 0.048 0.19 0.19 0.248 0.415 0.166 0.22 0.021

T=100, J=12
bias -0.07 0.013 -0.017 -0.019 0.004 -0.012 -0.027 0.005 0.002

√
MSE 0.2 0.039 0.161 0.161 0.167 0.282 0.157 0.201 0.013

T=100, J=20
bias -0.047 0.008 -0.006 -0.007 -0.009 -0.005 -0.008 -0.009 0.001

√
MSE 0.158 0.031 0.13 0.129 0.115 0.264 0.115 0.169 0.005

T=200, J=12
bias -0.039 0.007 -0.004 -0.003 -0.006 -0.027 -0.015 -0.001 0.001

√
MSE 0.141 0.027 0.109 0.109 0.088 0.219 0.108 0.164 0.003

Table 17: Estimation mixture with Local Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.134 0.025 -0.023 -0.024 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.307 0.059 0.26 0.259 0.251 0.34 0.214 0.244 0.019

T=50, J=12
bias -0.084 0.016 -0.024 -0.025 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.245 0.047 0.188 0.186 0.228 0.38 0.15 0.184 0.018

T=50, J=12
bias -0.075 0.015 -0.018 -0.016 0 0 -0.028 0.007 0.001

√
MSE 0.199 0.039 0.159 0.16 0.127 0.225 0.143 0.164 0.005

T=50, J=12
bias -0.039 0.007 -0.011 -0.011 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.162 0.032 0.129 0.129 0.104 0.226 0.103 0.125 0.004

T=50, J=12
bias -0.037 0.007 -0.008 -0.007 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.136 0.026 0.11 0.109 0.091 0.174 0.099 0.123 0.003
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Figure 10: Distribution of estimates for non-linear parameters with “Differentiation” instruments

(T = 200, J = 12)
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Figure 11: Distribution of estimates for non-linear parameters with “Optimal” instruments (T =

200, J = 12)
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Figure 12: Distribution of estimates for non-linear parameters with “Global Interval” instruments

(T = 200, J = 12)
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Figure 13: Distribution of estimates for non-linear parameters with “Local interval” instruments

(T = 200, J = 12)
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D.3.1 Estimation with a single Gaussian

Table 18: Estimation with a single Gaussian (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3

Sample size true 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5

T=50, J=12
bias -0.16 0.032 -0.031 -0.028 -0.032 -0.004 -0.09 0.018 -0.016 -0.014 -0.018 -0.003 -0.15 0.03 -0.028 -0.026 -0.03 -0.004 -0.15 0.03 -0.028 -0.026 -0.03 -0.001

√
MSE 0.292 0.057 0.212 0.209 0.138 0.069 0.27 0.053 0.214 0.211 0.138 0.067 0.288 0.056 0.212 0.209 0.138 0.066 0.286 0.056 0.212 0.209 0.138 0.064

T=50, J=20
bias -0.091 0.018 -0.022 -0.022 -0.015 0.001 -0.047 0.009 -0.013 -0.013 -0.006 0.001 -0.084 0.017 -0.021 -0.021 -0.013 0 -0.086 0.017 -0.021 -0.021 -0.014 0.002

√
MSE 0.209 0.041 0.159 0.16 0.106 0.05 0.199 0.039 0.16 0.161 0.106 0.05 0.206 0.041 0.16 0.16 0.106 0.052 0.208 0.041 0.159 0.16 0.106 0.052

T=100, J=12
bias -0.088 0.017 -0.001 0 -0.027 0.001 -0.052 0.01 0.007 0.007 -0.02 0.001 -0.082 0.016 0 0.001 -0.026 0.001 -0.074 0.014 -0.016 -0.016 -0.013 0.001

√
MSE 0.199 0.039 0.146 0.145 0.1 0.045 0.189 0.037 0.148 0.147 0.099 0.047 0.197 0.039 0.146 0.146 0.1 0.044 0.185 0.036 0.151 0.152 0.099 0.044

T=100, J=20
bias -0.043 0.009 -0.011 -0.012 -0.006 -0.001 -0.021 0.004 -0.007 -0.008 -0.002 -0.001 -0.04 0.008 -0.011 -0.012 -0.006 -0.001 -0.035 0.007 -0.01 -0.009 -0.004 0

√
MSE 0.145 0.028 0.115 0.114 0.075 0.035 0.141 0.028 0.115 0.114 0.075 0.035 0.145 0.028 0.115 0.114 0.076 0.035 0.14 0.027 0.116 0.115 0.076 0.035

T=100, J=20
bias -0.038 0.007 -0.012 -0.012 -0.004 0.001 -0.017 0.003 -0.006 -0.007 -0.001 0 -0.032 0.006 -0.009 -0.01 -0.004 0 -0.033 0.006 -0.009 -0.01 -0.004 0.001

√
MSE 0.132 0.026 0.11 0.11 0.073 0.032 0.127 0.025 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.031

E Empirical application

E.1 First stage regression: instruments on price

In Table 19 we present the first stage regression for the endogenous variable, price. The explanatory

variables include exogenous characteristics as well as the excluded instruments we presented in

7. We find that the excluded instruments are jointly significant with an F-stat of 467.41. As

expected, we see that the steel futures price and its interaction with the weight of the car correlate

positively with the price. We also see that the higher the exchange rate between the Euro and the

local currency at the place of assembly, the lower the price of the car as the cost of production

decreases. Moreover, we also see that if the location places a role as the European (country of

assembly) dummy is negatively correlated with price. This could point to shipping expenses that

are reflected in the price. Note that the effect of the labor costs is not as strong and not of the

expected sign. Although we control for missing labor costs in the data with a missing dummy

variable, it could still be causing a bias for the coefficient. Finally, the correlation between the

competition-related instruments and the price shows that the degree of competition across cars of

the same class matters.
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Table 19: First stage regression for price

Price/income

Labor costs (hourly) −0.0002∗∗

(0.0001)

Steel (futures) price −0.0001∗∗∗

(0.00001)

Steel (futures) price * Weight 0.00003∗∗∗

(0.00000)

# Cars by engine-type 0.001∗∗∗

(0.0001)

# Cars by engine-type and class −0.002∗∗∗

(0.00004)

Exchange rate (non European) −0.0002∗∗∗

(0.00002)

Europe dummy −0.018∗∗∗

(0.003)

Horsepower 0.527∗∗∗

(0.003)

Gasoline −0.057∗∗∗

(0.003)

Fuel cost −0.003∗∗∗

(0.001)

Size 0.037∗∗∗

(0.002)

Foreign −0.008∗∗∗

(0.003)

Height 0.062∗∗∗

(0.009)

Observations 38,999

R2 0.896

Adjusted R2 0.896

F Statistic 5,167.373∗∗∗ (df = 65; 38933)

Note:Brand, Year and State FE’s are included.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.2 Baseline specifications: logit and nested logit

Table 20 shows the results from the logit and nested logit specifications. We define the nests by

the class of the car, therefore limiting the substitution between the cars that belong to the same
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class within a nest.42 We observe that the estimates are stable across specifications.

Table 20: Estimation results - Logit and Nested Logit

OLS IV

(1) (2) (3) (4) (5)

Price/income −0.354∗∗∗ −2.907∗∗∗ −2.356∗∗∗ −2.729∗∗∗ −2.615∗∗∗

(0.041) (0.133) (0.124) (0.053) (0.052)

log(within market shares) 0.420∗∗∗ 0.407∗∗∗

(0.006) (0.006)

Fuel Cost −0.210∗∗∗ −0.138∗∗∗ −0.247∗∗∗ −0.074∗∗∗ −0.126∗∗∗

(0.008) (0.006) (0.009) (0.004) (0.006)

Size(m2) 0.031 0.001 0.158∗∗∗ −0.001 0.104∗∗∗

(0.038) (0.040) (0.041) (0.025) (0.026)

Horsepower(KW/100) 0.136 3.151∗∗∗ 2.511∗∗∗ 2.586∗∗∗ 2.431∗∗∗

(0.089) (0.183) (0.172) (0.080) (0.078)

Foreign 0.351∗∗∗ 0.083 0.120∗ −0.106∗∗ −0.101∗∗

(0.064) (0.073) (0.070) (0.046) (0.044)

Height(m) 0.870∗∗∗ 1.505∗∗∗ 3.487∗∗∗ 1.121∗∗∗ 2.270∗∗∗

(0.216) (0.197) (0.228) (0.125) (0.145)

Gasoline 1.399∗∗∗ 0.625∗∗∗ 1.118∗∗∗ 0.190∗∗∗ 0.422∗∗∗

(0.055) (0.061) (0.063) (0.039) (0.041)

Fuel cost × income 0.020∗∗∗ −0.002∗∗ 0.014∗∗∗ −0.002∗∗∗ 0.007∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001)

Size × income −0.005∗∗∗ −0.002∗∗∗ −0.006∗∗∗ 0.0003 −0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Horsepower × income 0.009∗∗∗ −0.026∗∗∗ −0.017∗∗∗ −0.027∗∗∗ −0.024∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001)

Horsepower × time −0.084∗∗∗ −0.068∗∗∗ −0.083∗∗∗ −0.038∗∗∗ −0.045∗∗∗

(0.006) (0.007) (0.007) (0.004) (0.004)

Foreign × income −0.019∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Height × income −0.006 0.032∗∗∗ −0.002 0.016∗∗∗ −0.003

(0.004) (0.004) (0.005) (0.003) (0.003)

Height × density −0.037∗∗∗ −0.003∗∗∗ −0.037∗∗∗ −0.001∗∗∗ −0.021∗∗∗

(0.004) (0.0003) (0.004) (0.0002) (0.003)

Gasoline × income −0.016∗∗∗ −0.003∗∗∗ −0.010∗∗∗ 0.0004 −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Gasoline × Post 2015 −0.024 −0.019

(0.019) (0.012)

Constant −7.937∗∗∗ −12.482∗∗∗ −11.171∗∗∗ −9.144∗∗∗ −8.506∗∗∗

(0.167) (0.149) (0.167) (0.092) (0.102)

State FE/ Year FE Y es No Y es No Y es

Observations 39,888 39,888 39,888 39,888 39,888

R2 0.385 0.217 0.272 0.686 0.709

Adjusted R2 0.384 0.216 0.271 0.686 0.709

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Brand FE’s are included.

42Car classes in the data are: Mini, small, lower-middle, middle, upper-middle, luxury.
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E.3 Counterfactual quantities under different specifications

We define quantities of interest and derive them under the different specifications considered

previously. For exposition purposes, we omit the dependence of the market shares in δt, x2t and

f , and simply write sj(p) instead of ρj(δt, x2t; f), where p is the price vector.

Price elasticities. For the calculation of the price elasticities one can refer to D.1 that writes

the quantities for the simulation exercise.

Demand curvature. The demand curvature is defined using second derivative of demand

as follows: η2j (p) = sj(p)
∂2sj(p)

∂p2j

(
∂sj(p)

∂pj

)−2

.

Marginal costs and mark-ups. To recover the marginal costs and the implied mark-ups,

we need to make additional assumptions on the supply side. Following the literature, we consider

that each multi-product firm f ∈ F sets prices for its own products in accordance with a Bertrand-

Nash equilibrium. The profit of each firm writes:

Πf (p) =
∑
t

∑
j∈Jf

(pj − cj)Mtsjt(p)

where Jf is the set of goods produced by firm f , cj is the marginal cost for good j, Mt is the

market size and sj(p) is the market share of product j. The first-order condition with respect to

price pj writes: ∑
t

Mt sjt(p) +
∑
t

Mt

∑
j′∈Jf

(pj′ − cj′)
∂sj′(p)

∂pj
= 0.

We gather all the FOCs and rewrite them in matricial form:

s(p) + (∆(p)) (p− c) = 0.

where ∆(p) =
∑

t Mt
∂sj′ (p)

∂pj
if j′ and j are produced by the same firm and equals to zero

otherwise. ∆(p) is known as the ownership matrix. Assuming that the prices are in equilibrium,

one can recover the marginal costs using the following equation:

c = p− (∆(p))−1 s(p). (17)

The mark-up for product j simply writes: pj − cj.
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Pass-through The pass-through of cost is defined as follows. Let us assume that the

marginal cost for product j goes from cj to c′j (with c′j > cj), then the cost pass-through equals

αj =
p′j−pj

c′j−cj
, where p′j is the new equilibrium price. We calculate the new equilibrium price using

Eqn. 17 using fixed point iteration. The pass-through corresponds to the proportion of the cost

increase that is transmitted to the price.

Table 21: Counterfactual quantities under different specifications on RCs (20 most popular cars)

Counterfactual quantity Price elasticity Curvature Marginal cost Mark-up Pass-through

Car Manufacturer Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture

Golf Volkswagen -1.09 -0.95 -3.03 1.00 1.14 1.21 1260 -9670 15436 24098 35028 9922 0.92 - 1.30

Polo Volkswagen -0.74 -0.70 -2.50 1.00 1.15 1.09 -6643 -14366 9073 23819 31542 8103 1.05 - 1.09

Passat Volkswagen -1.43 -1.21 -2.27 1.00 1.17 1.57 9488 -1033 17826 24631 35153 16294 1.02 - 2.65

Corsa PSA -0.66 -0.63 -2.28 1.00 1.14 1.07 -8432 -11246 8410 24088 26902 7246 1.02 - 1.12

Fiesta Ford -0.62 -0.60 -2.18 1.00 1.15 1.07 -8983 -10806 7657 23487 25310 6847 1.03 - 1.10

Tiguan Volkswagen -1.32 -1.14 -2.28 1.00 1.17 1.55 6831 -2919 16211 24118 33868 14738 1.01 - 2.62

Golf Volkswagen -1.17 -1.03 -3.12 1.00 1.18 1.27 3128 -7932 16582 23828 34888 10374 0.99 - 1.41

up! Volkswagen -0.53 -0.52 -1.92 1.00 1.14 1.05 -11231 -17703 4594 23278 29749 7453 1.04 - 0.96

Tiguan Volkswagen -1.34 -1.15 -3.09 1.00 1.19 1.38 7051 -4117 19186 23842 35009 11706 1.01 - 1.66

1er-Reihe BMW -1.16 -1.03 -3.09 1.00 1.18 1.28 3845 -769 19179 25138 29753 9805 0.99 - 1.39

Octavia Volkswagen -1.23 -1.08 -2.33 1.00 1.17 1.50 4629 -4504 15464 24211 33345 13377 1.01 - 2.34

A4 Volkswagen -1.56 -1.30 -2.26 1.00 1.19 1.56 13209 1995 20260 25865 37079 18814 1.01 - 2.66

Clio Renault -0.73 -0.70 -2.49 1.00 1.16 1.10 -6240 -8684 9817 23120 25563 7063 1.03 - 1.17

T-Roc Volkswagen -0.87 -0.81 -2.80 1.00 1.17 1.14 -3645 -12275 11578 23798 32427 8575 1.06 - 1.16

Kuga Ford -1.16 -1.03 -3.09 1.00 1.18 1.28 3654 -518 18214 23684 27856 9124 1.03 - 1.39

Golf Volkswagen -1.10 -0.99 -2.34 1.00 1.16 1.44 1548 -7284 13678 23929 32762 11799 0.96 - 2.13

A-Klasse Daimler -1.28 -1.10 -3.07 1.00 1.19 1.35 6608 562 20662 25066 31112 11013 1.01 - 1.56

Golf Volkswagen -1.05 -0.94 -2.33 1.00 1.16 1.42 417 -8115 13135 24177 32710 11460 0.72 - 2.11

Golf Volkswagen -1.18 -1.05 -3.15 1.00 1.18 1.27 3202 -8230 16705 23921 35353 10418 0.98 - 1.40

Octavia Volkswagen -1.05 -0.95 -3.02 1.00 1.17 1.21 380 -8835 14808 23862 33077 9433 0.78 - 1.30
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Figure 14: Estimated demand functions under different specifications
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